Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Feb;64(2):585–592. doi: 10.1128/iai.64.2.585-592.1996

Streptococcus salivarius urease: genetic and biochemical characterization and expression in a dental plaque streptococcus.

Y Y Chen 1, K A Clancy 1, R A Burne 1
PMCID: PMC173805  PMID: 8550211

Abstract

The hydrolysis of urea by urease enzyme of oral bacteria is believed to have a major impact on oral microbial ecology and to be intimately involved in oral health and diseases. To begin to understand the biochemistry and genetics of oral ureolysis, a study of the urease of Streptococcus salivarius, a highly ureolytic organism which is present in large numbers on the soft tissues of the oral cavity, has been initiated. By using as a probe a 0.6-kpb internal fragment of the S. salivarius 57.I ureC gene, two clones from subgenomic libraries of S. salivarius 57.I in an Escherichia coli plasmid vector were identified. Nucleotide sequence analysis revealed the presence of one partial and six complete open reading frames which were most homologous to ureIAB-CEFGD of other ureolytic bacteria. Plasmid clones were generated to construct a complete gene cluster and used to transform E. coli and Streptococcus gordonii DL1, a nonureolytic, dental plaque microorganism. The recombinant organisms expressed high levels of urease activity when the growth medium was supplemented with NiCl2. The urease enzyme was purified from E. coli, and its biochemical properties were compared with those of the urease produced by S. salivarius and those of the urease produced by S. gordonii carrying the plasmid-borne ure genes. In all cases, the enzyme had a Km of 3.5 to 4.1 mM, a pH optimum near 7.0, and a temperature optimum near 60 degrees C. S. gordonii carrying the urease genes was then demonstrated to have a significant capacity to temper glycolytic acidification in vitro in the presence of concentrations of urea commonly found in the oral cavity. The ability to genetically engineer plaque bacteria that can modulate environmental pH through ureolysis will open the way to using recombinant ureolytic organisms to test hypotheses regarding the role of oral ureolysis in dental caries, calculus formation, and periodontal diseases. Such recombinant organisms may eventually prove useful for controlling dental caries by replacement therapy.

Full Text

The Full Text of this article is available as a PDF (295.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. G., McKay L. L. Simple and rapid method for isolating large plasmid DNA from lactic streptococci. Appl Environ Microbiol. 1983 Sep;46(3):549–552. doi: 10.1128/aem.46.3.549-552.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bartolomé B., Jubete Y., Martínez E., de la Cruz F. Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives. Gene. 1991 Jun 15;102(1):75–78. doi: 10.1016/0378-1119(91)90541-i. [DOI] [PubMed] [Google Scholar]
  3. Belli W. A., Marquis R. E. Adaptation of Streptococcus mutans and Enterococcus hirae to acid stress in continuous culture. Appl Environ Microbiol. 1991 Apr;57(4):1134–1138. doi: 10.1128/aem.57.4.1134-1138.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Biswas S. D., Kleinberg I. Effect of urea concentration on its utilization, on the pH and the formation of ammonia and carbon dioxide in a human salivary sediment system. Arch Oral Biol. 1971 Jul;16(7):759–780. doi: 10.1016/0003-9969(71)90121-x. [DOI] [PubMed] [Google Scholar]
  6. Bradshaw D. J., McKee A. S., Marsh P. D. Effects of carbohydrate pulses and pH on population shifts within oral microbial communities in vitro. J Dent Res. 1989 Sep;68(9):1298–1302. doi: 10.1177/00220345890680090101. [DOI] [PubMed] [Google Scholar]
  7. Burne R. A., Schilling K., Bowen W. H., Yasbin R. E. Expression, purification, and characterization of an exo-beta-D-fructosidase of Streptococcus mutans. J Bacteriol. 1987 Oct;169(10):4507–4517. doi: 10.1128/jb.169.10.4507-4517.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen Y. Y., Burne R. A. Molecular analysis of the urease of Streptococcus salivarius strain 57.1. Dev Biol Stand. 1995;85:387–392. [PubMed] [Google Scholar]
  9. Collins C. M., D'Orazio S. E. Bacterial ureases: structure, regulation of expression and role in pathogenesis. Mol Microbiol. 1993 Sep;9(5):907–913. doi: 10.1111/j.1365-2958.1993.tb01220.x. [DOI] [PubMed] [Google Scholar]
  10. Creaser E. H., Porter R. L. The purification of urease from Aspergillus nidulans. Int J Biochem. 1985;17(12):1339–1341. doi: 10.1016/0020-711x(85)90057-6. [DOI] [PubMed] [Google Scholar]
  11. Cussac V., Ferrero R. L., Labigne A. Expression of Helicobacter pylori urease genes in Escherichia coli grown under nitrogen-limiting conditions. J Bacteriol. 1992 Apr;174(8):2466–2473. doi: 10.1128/jb.174.8.2466-2473.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dixon N. E., Gazzola C., Watters J. J., Blakely R. L., Zerner B. Inhibition of Jack Bean urease (EC 3.5.1.5) by acetohydroxamic acid and by phosphoramidate. An equivalent weight for urease. J Am Chem Soc. 1975 Jul 9;97(14):4130–4131. doi: 10.1021/ja00847a044. [DOI] [PubMed] [Google Scholar]
  13. Dunny G. M., Lee L. N., LeBlanc D. J. Improved electroporation and cloning vector system for gram-positive bacteria. Appl Environ Microbiol. 1991 Apr;57(4):1194–1201. doi: 10.1128/aem.57.4.1194-1201.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Eitinger T., Friedrich B. Cloning, nucleotide sequence, and heterologous expression of a high-affinity nickel transport gene from Alcaligenes eutrophus. J Biol Chem. 1991 Feb 15;266(5):3222–3227. [PubMed] [Google Scholar]
  15. Farrow J. A., Collins M. D. DNA base composition, DNA-DNA homology and long-chain fatty acid studies on streptococcus thermophilus and Streptococcus salivarius. J Gen Microbiol. 1984 Feb;130(2):357–362. doi: 10.1099/00221287-130-2-357. [DOI] [PubMed] [Google Scholar]
  16. Golub L. M., Borden S. M., Kleinberg I. Urea content of gingival crevicular fluid and its relation to periodontal diseases in humans. J Periodontal Res. 1971;6(4):243–251. doi: 10.1111/j.1600-0765.1971.tb00615.x. [DOI] [PubMed] [Google Scholar]
  17. Helgeland K. pH and the effect of NH4Cl on human gingival fibroblasts. Scand J Dent Res. 1985 Feb;93(1):39–45. doi: 10.1111/j.1600-0722.1985.tb01306.x. [DOI] [PubMed] [Google Scholar]
  18. Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. doi: 10.1016/0378-1119(84)90153-7. [DOI] [PubMed] [Google Scholar]
  19. Jones B. D., Mobley H. L. Proteus mirabilis urease: nucleotide sequence determination and comparison with jack bean urease. J Bacteriol. 1989 Dec;171(12):6414–6422. doi: 10.1128/jb.171.12.6414-6422.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kleinberg I. Effect of urea concentration on human plaque pH levels in situ. Arch Oral Biol. 1967 Dec;12(12):1475–1484. doi: 10.1016/0003-9969(67)90183-5. [DOI] [PubMed] [Google Scholar]
  21. Kopstein J., Wrong O. M. The origin and fate of salivary urea and ammonia in man. Clin Sci Mol Med. 1977 Jan;52(1):9–17. doi: 10.1042/cs0520009. [DOI] [PubMed] [Google Scholar]
  22. Labigne A., Cussac V., Courcoux P. Shuttle cloning and nucleotide sequences of Helicobacter pylori genes responsible for urease activity. J Bacteriol. 1991 Mar;173(6):1920–1931. doi: 10.1128/jb.173.6.1920-1931.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. Lee M. H., Pankratz H. S., Wang S., Scott R. A., Finnegan M. G., Johnson M. K., Ippolito J. A., Christianson D. W., Hausinger R. P. Purification and characterization of Klebsiella aerogenes UreE protein: a nickel-binding protein that functions in urease metallocenter assembly. Protein Sci. 1993 Jun;2(6):1042–1052. doi: 10.1002/pro.5560020617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Maeda M., Hidaka M., Nakamura A., Masaki H., Uozumi T. Cloning, sequencing, and expression of thermophilic Bacillus sp. strain TB-90 urease gene complex in Escherichia coli. J Bacteriol. 1994 Jan;176(2):432–442. doi: 10.1128/jb.176.2.432-442.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mandel I. D., Thompson R. H., Jr The chemistry of paratid and submaxillary saliva in heavy calculus formers and non-formers. J Periodontol. 1967 Jul-Aug;38(4):310–315. doi: 10.1902/jop.1967.38.4.310. [DOI] [PubMed] [Google Scholar]
  27. Martin P. R., Hausinger R. P. Site-directed mutagenesis of the active site cysteine in Klebsiella aerogenes urease. J Biol Chem. 1992 Oct 5;267(28):20024–20027. [PubMed] [Google Scholar]
  28. Mobley H. L., Garner R. M., Bauerfeind P. Helicobacter pylori nickel-transport gene nixA: synthesis of catalytically active urease in Escherichia coli independent of growth conditions. Mol Microbiol. 1995 Apr;16(1):97–109. doi: 10.1111/j.1365-2958.1995.tb02395.x. [DOI] [PubMed] [Google Scholar]
  29. Mobley H. L., Hausinger R. P. Microbial ureases: significance, regulation, and molecular characterization. Microbiol Rev. 1989 Mar;53(1):85–108. doi: 10.1128/mr.53.1.85-108.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mobley H. L., Island M. D., Hausinger R. P. Molecular biology of microbial ureases. Microbiol Rev. 1995 Sep;59(3):451–480. doi: 10.1128/mr.59.3.451-480.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mulrooney S. B., Hausinger R. P. Sequence of the Klebsiella aerogenes urease genes and evidence for accessory proteins facilitating nickel incorporation. J Bacteriol. 1990 Oct;172(10):5837–5843. doi: 10.1128/jb.172.10.5837-5843.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Park I. S., Carr M. B., Hausinger R. P. In vitro activation of urease apoprotein and role of UreD as a chaperone required for nickel metallocenter assembly. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3233–3237. doi: 10.1073/pnas.91.8.3233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Park I. S., Hausinger R. P. Evidence for the presence of urease apoprotein complexes containing UreD, UreF, and UreG in cells that are competent for in vivo enzyme activation. J Bacteriol. 1995 Apr;177(8):1947–1951. doi: 10.1128/jb.177.8.1947-1951.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Park I. S., Hausinger R. P. Site-directed mutagenesis of Klebsiella aerogenes urease: identification of histidine residues that appear to function in nickel ligation, substrate binding, and catalysis. Protein Sci. 1993 Jun;2(6):1034–1041. doi: 10.1002/pro.5560020616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Peterson S., Woodhead J., Crall J. Caries resistance in children with chronic renal failure: plaque pH, salivary pH, and salivary composition. Pediatr Res. 1985 Aug;19(8):796–799. doi: 10.1203/00006450-198508000-00003. [DOI] [PubMed] [Google Scholar]
  36. Salako N. O., Kleinberg I. Incidence of selected ureolytic bacteria in human dental plaque from sites with differing salivary access. Arch Oral Biol. 1989;34(10):787–791. doi: 10.1016/0003-9969(89)90029-0. [DOI] [PubMed] [Google Scholar]
  37. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sissons C. H., Cutress T. W. In-vitro urea-dependent pH-changes by human salivary bacteria and dispersed, artificial-mouth, bacterial plaques. Arch Oral Biol. 1987;32(3):181–189. doi: 10.1016/0003-9969(87)90132-4. [DOI] [PubMed] [Google Scholar]
  39. Sissons C. H., Hancock E. M., Perinpanayagam H. E., Cutress T. W. The bacteria responsible for ureolysis in artificial dental plaque. Arch Oral Biol. 1988;33(10):727–733. doi: 10.1016/0003-9969(88)90006-4. [DOI] [PubMed] [Google Scholar]
  40. Sriwanthana B., Island M. D., Maneval D., Mobley H. L. Single-step purification of Proteus mirabilis urease accessory protein UreE, a protein with a naturally occurring histidine tail, by nickel chelate affinity chromatography. J Bacteriol. 1994 Nov;176(22):6836–6841. doi: 10.1128/jb.176.22.6836-6841.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Takishima K., Suga T., Mamiya G. The structure of jack bean urease. The complete amino acid sequence, limited proteolysis and reactive cysteine residues. Eur J Biochem. 1988 Jul 15;175(1):151–165. doi: 10.1111/j.1432-1033.1988.tb14177.x. [DOI] [PubMed] [Google Scholar]
  42. Todd M. J., Hausinger R. P. Identification of the essential cysteine residue in Klebsiella aerogenes urease. J Biol Chem. 1991 Dec 25;266(36):24327–24331. [PubMed] [Google Scholar]
  43. Wolfram L., Friedrich B., Eitinger T. The Alcaligenes eutrophus protein HoxN mediates nickel transport in Escherichia coli. J Bacteriol. 1995 Apr;177(7):1840–1843. doi: 10.1128/jb.177.7.1840-1843.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. de Koning-Ward T. F., Ward A. C., Robins-Browne R. M. Characterisation of the urease-encoding gene complex of Yersinia enterocolitica. Gene. 1994 Jul 22;145(1):25–32. doi: 10.1016/0378-1119(94)90318-2. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES