Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Feb;64(2):616–623. doi: 10.1128/iai.64.2.616-623.1996

Monoclonal immunoglobulin A derived from peritoneal B cells is encoded by both germ line and somatically mutated VH genes and is reactive with commensal bacteria.

N A Bos 1, J C Bun 1, S H Popma 1, E R Cebra 1, G J Deenen 1, M J van der Cammen 1, F G Kroese 1, J J Cebra 1
PMCID: PMC173810  PMID: 8550216

Abstract

We transferred peritoneal cells from BALB/c mice into C.B17 scid/scid mice. Six to eight months after injection, only cells with the B1 phenotype were retained in the spleens and peritoneal cavities of these mice. The lamina propria of the intestine contained many peritoneal, donor-derived, immunoglobulin A (IgA)-producing cells. The mesenteric lymph nodes of these mice were found to be a major site of proliferation and generation of IgA plasmablasts. We established eight IgA-producing hybridomas from the mesenteric lymph nodes of such mice, and all the hybridomas reacted with different but partially overlapping fecal bacterial populations. Cloning and sequencing of the VH genes of these hybridomas showed that two hybridomas utilized germ line-encoded VH genes while the VH genes of the six hybridomas showed somatic mutations, some of which are indicative of an antigen-driven selection process.

Full Text

The Full Text of this article is available as a PDF (335.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akolkar P. N., Sikder S. K., Bhattacharya S. B., Liao J., Gruezo F., Morrison S. L., Kabat E. A. Different VL and VH germ-line genes are used to produce similar combining sites with specificity for alpha(1----6)dextrans. J Immunol. 1987 Jun 15;138(12):4472–4479. [PubMed] [Google Scholar]
  2. Apter F. M., Michetti P., Winner L. S., 3rd, Mack J. A., Mekalanos J. J., Neutra M. R. Analysis of the roles of antilipopolysaccharide and anti-cholera toxin immunoglobulin A (IgA) antibodies in protection against Vibrio cholerae and cholera toxin by use of monoclonal IgA antibodies in vivo. Infect Immun. 1993 Dec;61(12):5279–5285. doi: 10.1128/iai.61.12.5279-5285.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berek C., Ziegner M. The maturation of the immune response. Immunol Today. 1993 Aug;14(8):400–404. doi: 10.1016/0167-5699(93)90143-9. [DOI] [PubMed] [Google Scholar]
  4. Bos N. A., Meeuwsen C. G. B cell repertoire in adult antigen-free and conventional neonatal BALB/c mice. I. Preferential utilization of the CH-proximal VH gene family PC7183. Eur J Immunol. 1989 Oct;19(10):1811–1815. doi: 10.1002/eji.1830191008. [DOI] [PubMed] [Google Scholar]
  5. Bos N. A., Meeuwsen C. G., Wostmann B. S., Pleasants J. R., Benner R. The influence of exogenous antigenic stimulation on the specificity repertoire of background immunoglobulin-secreting cells of different isotypes. Cell Immunol. 1988 Apr 1;112(2):371–380. doi: 10.1016/0008-8749(88)90306-1. [DOI] [PubMed] [Google Scholar]
  6. Butcher E. C., Rouse R. V., Coffman R. L., Nottenburg C. N., Hardy R. R., Weissman I. L. Surface phenotype of Peyer's patch germinal center cells: implications for the role of germinal centers in B cell differentiation. J Immunol. 1982 Dec;129(6):2698–2707. [PubMed] [Google Scholar]
  7. Chang B., Casali P. The CDR1 sequences of a major proportion of human germline Ig VH genes are inherently susceptible to amino acid replacement. Immunol Today. 1994 Aug;15(8):367–373. doi: 10.1016/0167-5699(94)90175-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chao L. P., Steele J., Rodrigues C., Lennard-Jones J., Stanford J. L., Spiliadis C., Rook G. A. Specificity of antibodies secreted by hybridomas generated from activated B cells in the mesenteric lymph nodes of patients with inflammatory bowel disease. Gut. 1988 Jan;29(1):35–40. doi: 10.1136/gut.29.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chukwuocha R. U., Hartman A. B., Feeney A. J. Sequences of four new members of the VH7183 gene family in BALB/c mice. Immunogenetics. 1994;40(1):76–78. doi: 10.1007/BF00163968. [DOI] [PubMed] [Google Scholar]
  10. Craig S. W., Cebra J. J. Rabbit Peyer's patches, appendix, and popliteal lymph node B lymphocytes: a comparative analysis of their membrane immunoglobulin components and plasma cell precursor potential. J Immunol. 1975 Jan;114(1 Pt 2):492–502. [PubMed] [Google Scholar]
  11. Deenen G. J., Kroese F. G. Kinetics of B cell subpopulations in peripheral lymphoid tissues: evidence for the presence of phenotypically distinct short-lived and long-lived B cell subsets. Int Immunol. 1993 Jul;5(7):735–741. doi: 10.1093/intimm/5.7.735. [DOI] [PubMed] [Google Scholar]
  12. Förster I., Rajewsky K. Expansion and functional activity of Ly-1+ B cells upon transfer of peritoneal cells into allotype-congenic, newborn mice. Eur J Immunol. 1987 Apr;17(4):521–528. doi: 10.1002/eji.1830170414. [DOI] [PubMed] [Google Scholar]
  13. Gu H., Förster I., Rajewsky K. Sequence homologies, N sequence insertion and JH gene utilization in VHDJH joining: implications for the joining mechanism and the ontogenetic timing of Ly1 B cell and B-CLL progenitor generation. EMBO J. 1990 Jul;9(7):2133–2140. doi: 10.1002/j.1460-2075.1990.tb07382.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gu H., Tarlinton D., Müller W., Rajewsky K., Förster I. Most peripheral B cells in mice are ligand selected. J Exp Med. 1991 Jun 1;173(6):1357–1371. doi: 10.1084/jem.173.6.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hardy R. R., Hayakawa K. Development and physiology of Ly-1 B and its human homolog, Leu-1 B. Immunol Rev. 1986 Oct;93:53–79. doi: 10.1111/j.1600-065x.1986.tb01502.x. [DOI] [PubMed] [Google Scholar]
  16. Hardy R. R., Hayakawa K. Developmental origins, specificities and immunoglobulin gene biases of murine Ly-1 B cells. Int Rev Immunol. 1992;8(2-3):189–207. doi: 10.3109/08830189209055573. [DOI] [PubMed] [Google Scholar]
  17. Hayakawa K., Carmack C. E., Hyman R., Hardy R. R. Natural autoantibodies to thymocytes: origin, VH genes, fine specificities, and the role of Thy-1 glycoprotein. J Exp Med. 1990 Sep 1;172(3):869–878. doi: 10.1084/jem.172.3.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Herzenberg L. A., Stall A. M., Lalor P. A., Sidman C., Moore W. A., Parks D. R., Herzenberg L. A. The Ly-1 B cell lineage. Immunol Rev. 1986 Oct;93:81–102. doi: 10.1111/j.1600-065x.1986.tb01503.x. [DOI] [PubMed] [Google Scholar]
  19. Jansen G. J., Wilkinson M. H., Deddens B., van der Waaij D. Characterization of human faecal flora by means of an improved fluoro-morphometrical method. Epidemiol Infect. 1993 Oct;111(2):265–272. doi: 10.1017/s0950268800056971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kaartinen M., Solin M. L., Mäkelä O. 'Allelic' forms of immunoglobulin V genes in different strains of mice. EMBO J. 1989 Jun;8(6):1743–1748. doi: 10.1002/j.1460-2075.1989.tb03567.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kantor A. B., Stall A. M., Adams S., Watanabe K., Herzenberg L. A. De novo development and self-replenishment of B cells. Int Immunol. 1995 Jan;7(1):55–68. doi: 10.1093/intimm/7.1.55. [DOI] [PubMed] [Google Scholar]
  22. Kasturi K. N., Mayer R., Bona C. A., Scott V. E., Sidman C. L. Germline V genes encode viable motheaten mouse autoantibodies against thymocytes and red blood cells. J Immunol. 1990 Oct 1;145(7):2304–2311. [PubMed] [Google Scholar]
  23. Kramer D. R., Cebra J. J. Early appearance of "natural" mucosal IgA responses and germinal centers in suckling mice developing in the absence of maternal antibodies. J Immunol. 1995 Mar 1;154(5):2051–2062. [PubMed] [Google Scholar]
  24. Kroese F. G., Butcher E. C., Stall A. M., Lalor P. A., Adams S., Herzenberg L. A. Many of the IgA producing plasma cells in murine gut are derived from self-replenishing precursors in the peritoneal cavity. Int Immunol. 1989;1(1):75–84. doi: 10.1093/intimm/1.1.75. [DOI] [PubMed] [Google Scholar]
  25. Leahy D. J., Rule G. S., Whittaker M. M., McConnell H. M. Sequences of 12 monoclonal anti-dinitrophenyl spin-label antibodies for NMR studies. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3661–3665. doi: 10.1073/pnas.85.11.3661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Logtenberg T., Schutte M. E., Ebeling S. B., Gmelig-Meyling F. H., van Es J. H. Molecular approaches to the study of human B-cell and (auto)antibody repertoire generation and selection. Immunol Rev. 1992 Aug;128:23–47. doi: 10.1111/j.1600-065x.1992.tb00831.x. [DOI] [PubMed] [Google Scholar]
  27. Mattioli C. A., Tomasi T. B., Jr The life span of IgA plasma cells from the mouse intestine. J Exp Med. 1973 Aug 1;138(2):452–460. doi: 10.1084/jem.138.2.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. McGhee J. R., Mestecky J., Dertzbaugh M. T., Eldridge J. H., Hirasawa M., Kiyono H. The mucosal immune system: from fundamental concepts to vaccine development. Vaccine. 1992;10(2):75–88. doi: 10.1016/0264-410x(92)90021-b. [DOI] [PubMed] [Google Scholar]
  29. Michetti P., Mahan M. J., Slauch J. M., Mekalanos J. J., Neutra M. R. Monoclonal secretory immunoglobulin A protects mice against oral challenge with the invasive pathogen Salmonella typhimurium. Infect Immun. 1992 May;60(5):1786–1792. doi: 10.1128/iai.60.5.1786-1792.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Orlandi R., Güssow D. H., Jones P. T., Winter G. Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Proc Natl Acad Sci U S A. 1989 May;86(10):3833–3837. doi: 10.1073/pnas.86.10.3833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pecquet S. S., Ehrat C., Ernst P. B. Enhancement of mucosal antibody responses to Salmonella typhimurium and the microbial hapten phosphorylcholine in mice with X-linked immunodeficiency by B-cell precursors from the peritoneal cavity. Infect Immun. 1992 Feb;60(2):503–509. doi: 10.1128/iai.60.2.503-509.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Seppälä I., Kaartinen M., Ibrahim S., Mäkelä O. Mouse Ig coded by VH families S107 or J606 bind to protein A. J Immunol. 1990 Nov 1;145(9):2989–2993. [PubMed] [Google Scholar]
  35. Sikder S. K., Akolkar P. N., Kaladas P. M., Morrison S. L., Kabat E. A. Sequences of variable regions of hybridoma antibodies to alpha (1----6) dextran in BALB/c and C57BL/6 mice. J Immunol. 1985 Dec;135(6):4215–4221. [PubMed] [Google Scholar]
  36. Silverman G. J. Human antibody responses to bacterial antigens: studies of a model conventional antigen and a proposed model B cell superantigen. Int Rev Immunol. 1992;9(1):57–78. doi: 10.3109/08830189209061783. [DOI] [PubMed] [Google Scholar]
  37. Sprent J., Schaefer M., Hurd M., Surh C. D., Ron Y. Mature murine B and T cells transferred to SCID mice can survive indefinitely and many maintain a virgin phenotype. J Exp Med. 1991 Sep 1;174(3):717–728. doi: 10.1084/jem.174.3.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Takahashi S., Itoh J., Nose M., Ono M., Yamamoto T., Kyogoku M. Cloning and cDNA sequence analysis of nephritogenic monoclonal antibodies derived from an MRL/lpr lupus mouse. Mol Immunol. 1993 Feb;30(2):177–182. doi: 10.1016/0161-5890(93)90089-t. [DOI] [PubMed] [Google Scholar]
  39. Tucker P. W., Slightom J. L., Blattner F. R. Mouse IgA heavy chain gene sequence: implications for evolution of immunoglobulin hinge axons. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7684–7688. doi: 10.1073/pnas.78.12.7684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Van der Heijden P. J., Stok W. Improved procedure for the isolation of functionally active lymphoid cells from the murine intestine. J Immunol Methods. 1987 Nov 5;103(2):161–167. doi: 10.1016/0022-1759(87)90285-7. [DOI] [PubMed] [Google Scholar]
  41. Wilkinson M. H., Jansen G. J., van der Waaij D. Computer processing of microscopic images of bacteria: morphometry and fluorimetry. Trends Microbiol. 1994 Dec;2(12):485–489. doi: 10.1016/0966-842x(94)90653-x. [DOI] [PubMed] [Google Scholar]
  42. Wold A. E., Motas C., Svanborg C., Mestecky J. Lectin receptors on IgA isotypes. Scand J Immunol. 1994 Feb;39(2):195–201. doi: 10.1111/j.1365-3083.1994.tb03360.x. [DOI] [PubMed] [Google Scholar]
  43. van der Heijden P. J., Bianchi A. T., Heidt P. J., Stok W., Bokhout B. A. Background (spontaneous) immunoglobulin production in the murine small intestine before and after weaning. J Reprod Immunol. 1989 Jul;15(3):217–227. doi: 10.1016/0165-0378(89)90013-2. [DOI] [PubMed] [Google Scholar]
  44. van der Heijden P. J., Stok W., Bianchi A. T. Contribution of immunoglobulin-secreting cells in the murine small intestine to the total 'background' immunoglobulin production. Immunology. 1987 Dec;62(4):551–555. [PMC free article] [PubMed] [Google Scholar]
  45. van der Waaij L. A., Mesander G., Limburg P. C., van der Waaij D. Direct flow cytometry of anaerobic bacteria in human feces. Cytometry. 1994 Jul 1;16(3):270–279. doi: 10.1002/cyto.990160312. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES