Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2002 Nov;73(5):508–516. doi: 10.1136/jnnp.73.5.508

Relation between medial temporal atrophy and functional brain activity during memory processing in Alzheimer's disease: a combined MRI and SPECT study

G Garrido 1, S Furuie 1, C Buchpiguel 1, C Bottino 1, O Almeida 1, C Cid 1, C Camargo 1, C Castro 1, M Glabus 1, G Busatto 1
PMCID: PMC1738103  PMID: 12397142

Abstract

Objective: To investigate the relation between atrophy of the hippocampal region and brain functional patterns during episodic memory processing in Alzheimer's disease.

Patients and methods: Whole brain structural magnetic resonance imaging (MRI) data and single photon emission computed tomography (SPECT) measures of regional cerebral blood flow (rCBF) were obtained during a verbal recognition memory task in nine subjects with mild Alzheimer's disease and 10 elderly healthy controls. Using the statistical parametric mapping approach, voxel based comparisons were made on the MRI data to identify clusters of significantly reduced grey matter concentrations in the hippocampal region in the Alzheimer patients relative to the controls. The mean grey matter density in the voxel cluster of greatest hippocampal atrophy was extracted for each Alzheimer subject. This measure was used to investigate, on a voxel by voxel basis, the presence of significant correlations between the degree of hippocampal atrophy and the rCBF SPECT measures obtained during the memory task.

Results: Direct correlations were detected between the hippocampal grey matter density and rCBF values in voxel clusters located bilaterally in the temporal neocortex, in the left medial temporal region, and in the left posterior cingulate cortex during the memory task in the Alzheimer's disease group (p < 0.001). Conversely, measures of hippocampal atrophy were negatively correlated with rCBF values in voxel clusters located in the frontal lobes, involving the right and left inferior frontal gyri and the insula (p < 0.001).

Conclusions: Hippocampal atrophic changes in Alzheimer's disease are associated with reduced functional activity in limbic and associative temporal regions during episodic memory processing, but with increased activity in frontal areas, possibly on a compensatory basis.

Full Text

The Full Text of this article is available as a PDF (315.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen A. R., Friberg H. H., Schmidt J. F., Hasselbalch S. G. Quantitative measurements of cerebral blood flow using SPECT and [99mTc]-d,l-HM-PAO compared to xenon-133. J Cereb Blood Flow Metab. 1988 Dec;8(6):S69–S81. doi: 10.1038/jcbfm.1988.35. [DOI] [PubMed] [Google Scholar]
  2. Arriagada P. V., Growdon J. H., Hedley-Whyte E. T., Hyman B. T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology. 1992 Mar;42(3 Pt 1):631–639. doi: 10.1212/wnl.42.3.631. [DOI] [PubMed] [Google Scholar]
  3. Ashburner J., Friston K. J. Voxel-based morphometry--the methods. Neuroimage. 2000 Jun;11(6 Pt 1):805–821. doi: 10.1006/nimg.2000.0582. [DOI] [PubMed] [Google Scholar]
  4. Baron J. C., Chételat G., Desgranges B., Perchey G., Landeau B., de la Sayette V., Eustache F. In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer's disease. Neuroimage. 2001 Aug;14(2):298–309. doi: 10.1006/nimg.2001.0848. [DOI] [PubMed] [Google Scholar]
  5. Becker J. T., Mintun M. A., Aleva K., Wiseman M. B., Nichols T., DeKosky S. T. Compensatory reallocation of brain resources supporting verbal episodic memory in Alzheimer's disease. Neurology. 1996 Mar;46(3):692–700. doi: 10.1212/wnl.46.3.692. [DOI] [PubMed] [Google Scholar]
  6. Braak H., Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–259. doi: 10.1007/BF00308809. [DOI] [PubMed] [Google Scholar]
  7. Busatto G. F., Costa D. C., Ell P. J., Pilowsky L. S., David A. S., Kerwin R. W. Regional cerebral blood flow (rCBF) in schizophrenia during verbal memory activation: a 99mTc-HMPAO single photon emission tomography (SPET) study. Psychol Med. 1994 May;24(2):463–472. doi: 10.1017/s0033291700027434. [DOI] [PubMed] [Google Scholar]
  8. Bäckman L., Andersson J. L., Nyberg L., Winblad B., Nordberg A., Almkvist O. Brain regions associated with episodic retrieval in normal aging and Alzheimer's disease. Neurology. 1999 Jun 10;52(9):1861–1870. doi: 10.1212/wnl.52.9.1861. [DOI] [PubMed] [Google Scholar]
  9. Cabeza R., Nyberg L. Imaging cognition II: An empirical review of 275 PET and fMRI studies. J Cogn Neurosci. 2000 Jan;12(1):1–47. doi: 10.1162/08989290051137585. [DOI] [PubMed] [Google Scholar]
  10. Cardebat D., Démonet J. F., Puel M., Agniel A., Viallard G., Celsis P. Brain correlates of memory processes in patients with dementia of Alzheimer's type: a SPECT Activation Study. J Cereb Blood Flow Metab. 1998 Apr;18(4):457–462. doi: 10.1097/00004647-199804000-00014. [DOI] [PubMed] [Google Scholar]
  11. Costa D. C., Ell P. J., Burns A., Philpot M., Levy R. CBF tomograms with [99mTc-HM-PAO in patients with dementia (Alzheimer type and HIV) and Parkinson's disease--initial results. J Cereb Blood Flow Metab. 1988 Dec;8(6):S109–S115. doi: 10.1038/jcbfm.1988.40. [DOI] [PubMed] [Google Scholar]
  12. Daselaar S. M., Rombouts S. A., Veltman D. J., Raaijmakers J. G., Lazeron R. H., Jonker C. Parahippocampal activation during successful recognition of words: a self-paced event-related fMRI study. Neuroimage. 2001 Jun;13(6 Pt 1):1113–1120. doi: 10.1006/nimg.2001.0758. [DOI] [PubMed] [Google Scholar]
  13. Desgranges B., Baron J. C., de la Sayette V., Petit-Taboué M. C., Benali K., Landeau B., Lechevalier B., Eustache F. The neural substrates of memory systems impairment in Alzheimer's disease. A PET study of resting brain glucose utilization. Brain. 1998 Apr;121(Pt 4):611–631. doi: 10.1093/brain/121.4.611. [DOI] [PubMed] [Google Scholar]
  14. Donaldson D. I., Petersen S. E., Ollinger J. M., Buckner R. L. Dissociating state and item components of recognition memory using fMRI. Neuroimage. 2001 Jan;13(1):129–142. doi: 10.1006/nimg.2000.0664. [DOI] [PubMed] [Google Scholar]
  15. Folstein M. F., Folstein S. E., McHugh P. R. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975 Nov;12(3):189–198. doi: 10.1016/0022-3956(75)90026-6. [DOI] [PubMed] [Google Scholar]
  16. Friston K. J., Holmes A., Poline J. B., Price C. J., Frith C. D. Detecting activations in PET and fMRI: levels of inference and power. Neuroimage. 1996 Dec;4(3 Pt 1):223–235. doi: 10.1006/nimg.1996.0074. [DOI] [PubMed] [Google Scholar]
  17. Fuld P. A., Masur D. M., Blau A. D., Crystal H., Aronson M. K. Object-memory evaluation for prospective detection of dementia in normal functioning elderly: predictive and normative data. J Clin Exp Neuropsychol. 1990 Aug;12(4):520–528. doi: 10.1080/01688639008400998. [DOI] [PubMed] [Google Scholar]
  18. Furey M. L., Pietrini P., Haxby J. V., Alexander G. E., Lee H. C., VanMeter J., Grady C. L., Shetty U., Rapoport S. I., Schapiro M. B. Cholinergic stimulation alters performance and task-specific regional cerebral blood flow during working memory. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6512–6516. doi: 10.1073/pnas.94.12.6512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gemmell H. G., Sharp P. F., Besson J. A., Crawford J. R., Ebmeier K. P., Davidson J., Smith F. W. Differential diagnosis in dementia using the cerebral blood flow agent 99mTc HM-PAO: a SPECT study. J Comput Assist Tomogr. 1987 May-Jun;11(3):398–402. doi: 10.1097/00004728-198705000-00005. [DOI] [PubMed] [Google Scholar]
  20. Grady C. L., Furey M. L., Pietrini P., Horwitz B., Rapoport S. I. Altered brain functional connectivity and impaired short-term memory in Alzheimer's disease. Brain. 2001 Apr;124(Pt 4):739–756. doi: 10.1093/brain/124.4.739. [DOI] [PubMed] [Google Scholar]
  21. Holman B. L., Johnson K. A., Gerada B., Carvalho P. A., Satlin A. The scintigraphic appearance of Alzheimer's disease: a prospective study using technetium-99m-HMPAO SPECT. J Nucl Med. 1992 Feb;33(2):181–185. [PubMed] [Google Scholar]
  22. Jack C. R., Jr, Petersen R. C., Xu Y. C., Waring S. C., O'Brien P. C., Tangalos E. G., Smith G. E., Ivnik R. J., Kokmen E. Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease. Neurology. 1997 Sep;49(3):786–794. doi: 10.1212/wnl.49.3.786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jobst K. A., Smith A. D., Barker C. S., Wear A., King E. M., Smith A., Anslow P. A., Molyneux A. J., Shepstone B. J., Soper N. Association of atrophy of the medial temporal lobe with reduced blood flow in the posterior parietotemporal cortex in patients with a clinical and pathological diagnosis of Alzheimer's disease. J Neurol Neurosurg Psychiatry. 1992 Mar;55(3):190–194. doi: 10.1136/jnnp.55.3.190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kessler J., Herholz K., Grond M., Heiss W. D. Impaired metabolic activation in Alzheimer's disease: a PET study during continuous visual recognition. Neuropsychologia. 1991;29(3):229–243. doi: 10.1016/0028-3932(91)90084-l. [DOI] [PubMed] [Google Scholar]
  25. Kogure D., Matsuda H., Ohnishi T., Asada T., Uno M., Kunihiro T., Nakano S., Takasaki M. Longitudinal evaluation of early Alzheimer's disease using brain perfusion SPECT. J Nucl Med. 2000 Jul;41(7):1155–1162. [PubMed] [Google Scholar]
  26. Krasuski J. S., Alexander G. E., Horwitz B., Daly E. M., Murphy D. G., Rapoport S. I., Schapiro M. B. Volumes of medial temporal lobe structures in patients with Alzheimer's disease and mild cognitive impairment (and in healthy controls). Biol Psychiatry. 1998 Jan 1;43(1):60–68. doi: 10.1016/s0006-3223(97)00013-9. [DOI] [PubMed] [Google Scholar]
  27. Laakso M. P., Soininen H., Partanen K., Helkala E. L., Hartikainen P., Vainio P., Hallikainen M., Hänninen T., Riekkinen P. J., Sr Volumes of hippocampus, amygdala and frontal lobes in the MRI-based diagnosis of early Alzheimer's disease: correlation with memory functions. J Neural Transm Park Dis Dement Sect. 1995;9(1):73–86. doi: 10.1007/BF02252964. [DOI] [PubMed] [Google Scholar]
  28. Matsuda H. Cerebral blood flow and metabolic abnormalities in Alzheimer's disease. Ann Nucl Med. 2001 Apr;15(2):85–92. doi: 10.1007/BF02988596. [DOI] [PubMed] [Google Scholar]
  29. McDermott K. B., Jones T. C., Petersen S. E., Lageman S. K., Roediger H. L., 3rd Retrieval success is accompanied by enhanced activation in anterior prefrontal cortex during recognition memory: an event-related fMRI study. J Cogn Neurosci. 2000 Nov;12(6):965–976. doi: 10.1162/08989290051137503. [DOI] [PubMed] [Google Scholar]
  30. McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E. M. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984 Jul;34(7):939–944. doi: 10.1212/wnl.34.7.939. [DOI] [PubMed] [Google Scholar]
  31. Meguro K., LeMestric C., Landeau B., Desgranges B., Eustache F., Baron J. C. Relations between hypometabolism in the posterior association neocortex and hippocampal atrophy in Alzheimer's disease: a PET/MRI correlative study. J Neurol Neurosurg Psychiatry. 2001 Sep;71(3):315–321. doi: 10.1136/jnnp.71.3.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Meltzer C. C., Zubieta J. K., Brandt J., Tune L. E., Mayberg H. S., Frost J. J. Regional hypometabolism in Alzheimer's disease as measured by positron emission tomography after correction for effects of partial volume averaging. Neurology. 1996 Aug;47(2):454–461. doi: 10.1212/wnl.47.2.454. [DOI] [PubMed] [Google Scholar]
  33. Monsch A. U., Bondi M. W., Butters N., Salmon D. P., Katzman R., Thal L. J. Comparisons of verbal fluency tasks in the detection of dementia of the Alzheimer type. Arch Neurol. 1992 Dec;49(12):1253–1258. doi: 10.1001/archneur.1992.00530360051017. [DOI] [PubMed] [Google Scholar]
  34. Montgomery S. A., Asberg M. A new depression scale designed to be sensitive to change. Br J Psychiatry. 1979 Apr;134:382–389. doi: 10.1192/bjp.134.4.382. [DOI] [PubMed] [Google Scholar]
  35. Nakano S., Asada T., Matsuda H., Uno M., Takasaki M. Donepezil hydrochloride preserves regional cerebral blood flow in patients with Alzheimer's disease. J Nucl Med. 2001 Oct;42(10):1441–1445. [PubMed] [Google Scholar]
  36. Ohnishi T., Hoshi H., Nagamachi S., Jinnouchi S., Flores L. G., 2nd, Futami S., Watanabe K. High-resolution SPECT to assess hippocampal perfusion in neuropsychiatric diseases. J Nucl Med. 1995 Jul;36(7):1163–1169. [PubMed] [Google Scholar]
  37. Pandya D. N., Van Hoesen G. W., Mesulam M. M. Efferent connections of the cingulate gyrus in the rhesus monkey. Exp Brain Res. 1981;42(3-4):319–330. doi: 10.1007/BF00237497. [DOI] [PubMed] [Google Scholar]
  38. Pantel J., Schröder J., Schad L. R., Friedlinger M., Knopp M. V., Schmitt R., Geissler M., Blüml S., Essig M., Sauer H. Quantitative magnetic resonance imaging and neuropsychological functions in dementia of the Alzheimer type. Psychol Med. 1997 Jan;27(1):221–229. doi: 10.1017/s003329179600431x. [DOI] [PubMed] [Google Scholar]
  39. Petersen R. C., Jack C. R., Jr, Xu Y. C., Waring S. C., O'Brien P. C., Smith G. E., Ivnik R. J., Tangalos E. G., Boeve B. F., Kokmen E. Memory and MRI-based hippocampal volumes in aging and AD. Neurology. 2000 Feb 8;54(3):581–587. doi: 10.1212/wnl.54.3.581. [DOI] [PubMed] [Google Scholar]
  40. Potkin S. G., Anand R., Fleming K., Alva G., Keator D., Carreon D., Messina J., Wu J. C., Hartman R., Fallon J. H. Brain metabolic and clinical effects of rivastigmine in Alzheimer's disease. Int J Neuropsychopharmacol. 2001 Sep;4(3):223–230. doi: 10.1017/S1461145701002528. [DOI] [PubMed] [Google Scholar]
  41. Rapoport S. I., Horwitz B., Grady C. L., Haxby J. V., DeCarli C., Schapiro M. B. Abnormal brain glucose metabolism in Alzheimer's disease, as measured by position emission tomography. Adv Exp Med Biol. 1991;291:231–248. doi: 10.1007/978-1-4684-5931-9_18. [DOI] [PubMed] [Google Scholar]
  42. Rapoport S. I. In vivo PET imaging and postmortem studies suggest potentially reversible and irreversible stages of brain metabolic failure in Alzheimer's disease. Eur Arch Psychiatry Clin Neurosci. 1999;249 (Suppl 3):46–55. doi: 10.1007/pl00014174. [DOI] [PubMed] [Google Scholar]
  43. Riddle W., O'Carroll R. E., Dougall N., Van Beck M., Murray C., Curran S. M., Ebmeier K. P., Goodwin G. M. A single photon emission computerised tomography study of regional brain function underlying verbal memory in patients with Alzheimer-type dementia. Br J Psychiatry. 1993 Aug;163:166–172. doi: 10.1192/bjp.163.2.166. [DOI] [PubMed] [Google Scholar]
  44. Rombouts S. A., Barkhof F., Witter M. P., Scheltens P. Unbiased whole-brain analysis of gray matter loss in Alzheimer's disease. Neurosci Lett. 2000 May 19;285(3):231–233. doi: 10.1016/s0304-3940(00)01067-3. [DOI] [PubMed] [Google Scholar]
  45. Roth M., Tym E., Mountjoy C. Q., Huppert F. A., Hendrie H., Verma S., Goddard R. CAMDEX. A standardised instrument for the diagnosis of mental disorder in the elderly with special reference to the early detection of dementia. Br J Psychiatry. 1986 Dec;149:698–709. doi: 10.1192/bjp.149.6.698. [DOI] [PubMed] [Google Scholar]
  46. Saykin A. J., Flashman L. A., Frutiger S. A., Johnson S. C., Mamourian A. C., Moritz C. H., O'Jile J. R., Riordan H. J., Santulli R. B., Smith C. A. Neuroanatomic substrates of semantic memory impairment in Alzheimer's disease: patterns of functional MRI activation. J Int Neuropsychol Soc. 1999 Jul;5(5):377–392. doi: 10.1017/s135561779955501x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Small G. W., Ercoli L. M., Silverman D. H., Huang S. C., Komo S., Bookheimer S. Y., Lavretsky H., Miller K., Siddarth P., Rasgon N. L. Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer's disease. Proc Natl Acad Sci U S A. 2000 May 23;97(11):6037–6042. doi: 10.1073/pnas.090106797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Squire L. R., Zola-Morgan S. The medial temporal lobe memory system. Science. 1991 Sep 20;253(5026):1380–1386. doi: 10.1126/science.1896849. [DOI] [PubMed] [Google Scholar]
  49. Terry R. D., Katzman R. Senile dementia of the Alzheimer type. Ann Neurol. 1983 Nov;14(5):497–506. doi: 10.1002/ana.410140502. [DOI] [PubMed] [Google Scholar]
  50. Woodard J. L., Grafton S. T., Votaw J. R., Green R. C., Dobraski M. E., Hoffman J. M. Compensatory recruitment of neural resources during overt rehearsal of word lists in Alzheimer's disease. Neuropsychology. 1998 Oct;12(4):491–504. doi: 10.1037//0894-4105.12.4.491. [DOI] [PubMed] [Google Scholar]
  51. Yamaguchi S., Meguro K., Itoh M., Hayasaka C., Shimada M., Yamazaki H., Yamadori A. Decreased cortical glucose metabolism correlates with hippocampal atrophy in Alzheimer's disease as shown by MRI and PET. J Neurol Neurosurg Psychiatry. 1997 Jun;62(6):596–600. doi: 10.1136/jnnp.62.6.596. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES