Abstract
Objectives: Gamma oscillations (30–100 Hz gamma electroencephalographic (EEG) activity) correlate with high frequency synchronous rhythmic bursting in assemblies of cerebral neurons participating in aspects of consciousness. Previous studies in a kainic acid animal model of epilepsy revealed increased intensity of gamma rhythms in background EEG preceding epileptiform discharges, leading the authors to test for intensified gamma EEG in humans with epilepsy.
Methods: 64 channel cortical EEG were recorded from 10 people with primary generalised epilepsy, 11 with partial epilepsy, and 20 controls during a quiescent mental state. Using standard methods of EEG analysis the strength of EEG rhythms (fast Fourier transformation) was quantified and the strengths of rhythms in the patient groups compared with with controls by unpaired t test at 1 Hz intervals from 1 Hz to 100 Hz.
Results: In patients with generalised epilepsy, there was a threefold to sevenfold increase in power of gamma EEG between 30 Hz and 100 Hz (p<0.01). Analysis of three unmedicated patients with primary generalised epilepsies revealed an additional 10-fold narrow band increase of power around 35 Hz–40 Hz (p<0.0001). There were no corresponding changes in patients with partial epilepsy.
Conclusions: Increased gamma EEG is probably a marker of the underlying ion channel or neurotransmitter receptor dysfunction in primary generalised epilepsies and may also be a pathophysiological prerequisite for the development of seizures. The finding provides a new diagnostic approach and also links the pathophysiology of generalised epilepsies to emerging concepts of neuronal correlates of consciousness.
Full Text
The Full Text of this article is available as a PDF (162.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aoki F., Fetz E. E., Shupe L., Lettich E., Ojemann G. A. Increased gamma-range activity in human sensorimotor cortex during performance of visuomotor tasks. Clin Neurophysiol. 1999 Mar;110(3):524–537. doi: 10.1016/s1388-2457(98)00064-9. [DOI] [PubMed] [Google Scholar]
- Burnashev N., Villarroel A., Sakmann B. Dimensions and ion selectivity of recombinant AMPA and kainate receptor channels and their dependence on Q/R site residues. J Physiol. 1996 Oct 1;496(Pt 1):165–173. doi: 10.1113/jphysiol.1996.sp021674. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heinemann U., Konnerth A., Pumain R., Wadman W. J. Extracellular calcium and potassium concentration changes in chronic epileptic brain tissue. Adv Neurol. 1986;44:641–661. [PubMed] [Google Scholar]
- Hughes J. R. Correlations between EEG and chemical changes in uremia. Electroencephalogr Clin Neurophysiol. 1980 May;48(5):583–594. doi: 10.1016/0013-4694(80)90293-x. [DOI] [PubMed] [Google Scholar]
- Jensen M. S., Azouz R., Yaari Y. Variant firing patterns in rat hippocampal pyramidal cells modulated by extracellular potassium. J Neurophysiol. 1994 Mar;71(3):831–839. doi: 10.1152/jn.1994.71.3.831. [DOI] [PubMed] [Google Scholar]
- Jouvenceau A., Eunson L. H., Spauschus A., Ramesh V., Zuberi S. M., Kullmann D. M., Hanna M. G. Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel. Lancet. 2001 Sep 8;358(9284):801–807. doi: 10.1016/S0140-6736(01)05971-2. [DOI] [PubMed] [Google Scholar]
- Keil A., Müller M. M., Ray W. J., Gruber T., Elbert T. Human gamma band activity and perception of a gestalt. J Neurosci. 1999 Aug 15;19(16):7152–7161. doi: 10.1523/JNEUROSCI.19-16-07152.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kostopoulos G., Avoli M. Enhanced response of cortical neurons to thalamic stimuli precedes the appearance of spike and wave discharges in feline generalized penicillin epilepsy. Brain Res. 1983 Nov 14;278(1-2):207–217. doi: 10.1016/0006-8993(83)90239-1. [DOI] [PubMed] [Google Scholar]
- MacDonald B. K., Cockerell O. C., Sander J. W., Shorvon S. D. The incidence and lifetime prevalence of neurological disorders in a prospective community-based study in the UK. Brain. 2000 Apr;123(Pt 4):665–676. doi: 10.1093/brain/123.4.665. [DOI] [PubMed] [Google Scholar]
- Matsuoka H., Takahashi T., Sasaki M., Matsumoto K., Yoshida S., Numachi Y., Saito H., Ueno T., Sato M. Neuropsychological EEG activation in patients with epilepsy. Brain. 2000 Feb;123(Pt 2):318–330. doi: 10.1093/brain/123.2.318. [DOI] [PubMed] [Google Scholar]
- Medvedev A., Mackenzie L., Hiscock J. J., Willoughby J. O. Frontal cortex leads other brain structures in generalised spike-and-wave spindles and seizure spikes induced by picrotoxin. Electroencephalogr Clin Neurophysiol. 1996 Feb;98(2):157–166. doi: 10.1016/0013-4694(95)00225-1. [DOI] [PubMed] [Google Scholar]
- Medvedev A., Mackenzie L., Hiscock J. J., Willoughby J. O. Kainic acid induces distinct types of epileptiform discharge with differential involvement of hippocampus and neocortex. Brain Res Bull. 2000 May 15;52(2):89–98. doi: 10.1016/s0361-9230(00)00239-2. [DOI] [PubMed] [Google Scholar]
- Medvedev A., Willoughby J. O. Autoregressive modeling of the EEG in systemic kainic acid-induced epileptogenesis. Int J Neurosci. 1999 Apr;97(3-4):149–167. doi: 10.3109/00207459909000657. [DOI] [PubMed] [Google Scholar]
- Miyauchi T., Endo K., Yamaguchi T., Hagimoto H. Computerized analysis of EEG background activity in epileptic patients. Epilepsia. 1991 Nov-Dec;32(6):870–881. doi: 10.1111/j.1528-1157.1991.tb05544.x. [DOI] [PubMed] [Google Scholar]
- Platt M. L., Glimcher P. W. Neural correlates of decision variables in parietal cortex. Nature. 1999 Jul 15;400(6741):233–238. doi: 10.1038/22268. [DOI] [PubMed] [Google Scholar]
- Prince D. A. Physiological mechanisms of focal epileptogenesis. Epilepsia. 1985;26 (Suppl 1):S3–14. doi: 10.1111/j.1528-1157.1985.tb05721.x. [DOI] [PubMed] [Google Scholar]
- Reutens D. C., Berkovic S. F., Macdonell R. A., Bladin P. F. Magnetic stimulation of the brain in generalized epilepsy: reversal of cortical hyperexcitability by anticonvulsants. Ann Neurol. 1993 Sep;34(3):351–355. doi: 10.1002/ana.410340308. [DOI] [PubMed] [Google Scholar]
- Salinsky M. C., Oken B. S., Morehead L. Intraindividual analysis of antiepileptic drug effects on EEG background rhythms. Electroencephalogr Clin Neurophysiol. 1994 Mar;90(3):186–193. doi: 10.1016/0013-4694(94)90090-6. [DOI] [PubMed] [Google Scholar]
- Steriade M., Contreras D. Relations between cortical and thalamic cellular events during transition from sleep patterns to paroxysmal activity. J Neurosci. 1995 Jan;15(1 Pt 2):623–642. doi: 10.1523/JNEUROSCI.15-01-00623.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tallon-Baudry C., Bertrand O., Peronnet F., Pernier J. Induced gamma-band activity during the delay of a visual short-term memory task in humans. J Neurosci. 1998 Jun 1;18(11):4244–4254. doi: 10.1523/JNEUROSCI.18-11-04244.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallace R. H., Marini C., Petrou S., Harkin L. A., Bowser D. N., Panchal R. G., Williams D. A., Sutherland G. R., Mulley J. C., Scheffer I. E. Mutant GABA(A) receptor gamma2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet. 2001 May;28(1):49–52. doi: 10.1038/ng0501-49. [DOI] [PubMed] [Google Scholar]
- Wallace R. H., Wang D. W., Singh R., Scheffer I. E., George A. L., Jr, Phillips H. A., Saar K., Reis A., Johnson E. W., Sutherland G. R. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel beta1 subunit gene SCN1B. Nat Genet. 1998 Aug;19(4):366–370. doi: 10.1038/1252. [DOI] [PubMed] [Google Scholar]
- Willoughby J. O., Mackenzie L., Medvedev A., Hiscock J. J. Distribution of Fos-positive neurons in cortical and subcortical structures after picrotoxin-induced convulsions varies with seizure type. Brain Res. 1995 Jun 12;683(1):73–87. doi: 10.1016/0006-8993(95)00366-x. [DOI] [PubMed] [Google Scholar]
- Willoughby J. O., Mackenzie L., Medvedev A., Hiscock J. J. Fos induction following systemic kainic acid: early expression in hippocampus and later widespread expression correlated with seizure. Neuroscience. 1997 Mar;77(2):379–392. doi: 10.1016/s0306-4522(96)00462-9. [DOI] [PubMed] [Google Scholar]