Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2003 Nov;74(11):1466–1475. doi: 10.1136/jnnp.74.11.1466

Nanotechnology for neuronal ion channels

F Lehmann-Horn, K Jurkat-Rott
PMCID: PMC1738249  PMID: 14617700

Full Text

The Full Text of this article is available as a PDF (821.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alonso José Luis, Goldmann Wolfgang H. Feeling the forces: atomic force microscopy in cell biology. Life Sci. 2003 Apr 25;72(23):2553–2560. doi: 10.1016/s0024-3205(03)00165-6. [DOI] [PubMed] [Google Scholar]
  2. Armstrong C. M., Gilly W. F. Access resistance and space clamp problems associated with whole-cell patch clamping. Methods Enzymol. 1992;207:100–122. doi: 10.1016/0076-6879(92)07007-b. [DOI] [PubMed] [Google Scholar]
  3. Biervert C., Schroeder B. C., Kubisch C., Berkovic S. F., Propping P., Jentsch T. J., Steinlein O. K. A potassium channel mutation in neonatal human epilepsy. Science. 1998 Jan 16;279(5349):403–406. doi: 10.1126/science.279.5349.403. [DOI] [PubMed] [Google Scholar]
  4. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986 Mar 3;56(9):930–933. doi: 10.1103/PhysRevLett.56.930. [DOI] [PubMed] [Google Scholar]
  5. Claudio T. Stable expression of heterologous multisubunit protein complexes established by calcium phosphate- or lipid-mediated cotransfection. Methods Enzymol. 1992;207:391–408. doi: 10.1016/0076-6879(92)07028-m. [DOI] [PubMed] [Google Scholar]
  6. Evans Jenafer, Yue David T. New turf for CFP/YFP FRET imaging of membrane signaling molecules. Neuron. 2003 Apr 24;38(2):145–147. doi: 10.1016/s0896-6273(03)00234-4. [DOI] [PubMed] [Google Scholar]
  7. Florin E. L., Moy V. T., Gaub H. E. Adhesion forces between individual ligand-receptor pairs. Science. 1994 Apr 15;264(5157):415–417. doi: 10.1126/science.8153628. [DOI] [PubMed] [Google Scholar]
  8. Goldin A. L. Maintenance of Xenopus laevis and oocyte injection. Methods Enzymol. 1992;207:266–279. doi: 10.1016/0076-6879(92)07017-i. [DOI] [PubMed] [Google Scholar]
  9. Goldin A. L., Sumikawa K. Preparation of RNA for injection into Xenopus oocytes. Methods Enzymol. 1992;207:279–297. doi: 10.1016/0076-6879(92)07018-j. [DOI] [PubMed] [Google Scholar]
  10. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  12. Haydon P. G., Henderson E., Stanley E. F. Localization of individual calcium channels at the release face of a presynaptic nerve terminal. Neuron. 1994 Dec;13(6):1275–1280. doi: 10.1016/0896-6273(94)90414-6. [DOI] [PubMed] [Google Scholar]
  13. Hoh J. H., Schoenenberger C. A. Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. J Cell Sci. 1994 May;107(Pt 5):1105–1114. doi: 10.1242/jcs.107.5.1105. [DOI] [PubMed] [Google Scholar]
  14. Horn R., Korn S. J. Prevention of rundown in electrophysiological recording. Methods Enzymol. 1992;207:149–155. doi: 10.1016/0076-6879(92)07010-l. [DOI] [PubMed] [Google Scholar]
  15. Hörber J. K., Häberle W., Ohnesorge F., Binnig G., Liebich H. G., Czerny C. P., Mahnel H., Mayr A. Investigation of living cells in the nanometer regime with the scanning force microscope. Scanning Microsc. 1992 Dec;6(4):919–930. [PubMed] [Google Scholar]
  16. Jiang Youxing, Lee Alice, Chen Jiayun, Ruta Vanessa, Cadene Martine, Chait Brian T., MacKinnon Roderick. X-ray structure of a voltage-dependent K+ channel. Nature. 2003 May 1;423(6935):33–41. doi: 10.1038/nature01580. [DOI] [PubMed] [Google Scholar]
  17. Jiang Youxing, Ruta Vanessa, Chen Jiayun, Lee Alice, MacKinnon Roderick. The principle of gating charge movement in a voltage-dependent K+ channel. Nature. 2003 May 1;423(6935):42–48. doi: 10.1038/nature01581. [DOI] [PubMed] [Google Scholar]
  18. Langer M. G., Fink S., Koitschev A., Rexhausen U., Hörber J. K., Ruppersberg J. P. Lateral mechanical coupling of stereocilia in cochlear hair bundles. Biophys J. 2001 Jun;80(6):2608–2621. doi: 10.1016/s0006-3495(01)76231-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Langer M. G., Koitschev A., Haase H., Rexhausen U., Hörber J. K., Ruppersberg J. P. Mechanical stimulation of individual stereocilia of living cochlear hair cells by atomic force microscopy. Ultramicroscopy. 2000 Feb;82(1-4):269–278. doi: 10.1016/s0304-3991(99)00136-9. [DOI] [PubMed] [Google Scholar]
  20. Le Grimellec C., Lesniewska E., Giocondi M. C., Finot E., Vié V., Goudonnet J. P. Imaging of the surface of living cells by low-force contact-mode atomic force microscopy. Biophys J. 1998 Aug;75(2):695–703. doi: 10.1016/S0006-3495(98)77559-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lehmann-Horn F., Jurkat-Rott K. Voltage-gated ion channels and hereditary disease. Physiol Rev. 1999 Oct;79(4):1317–1372. doi: 10.1152/physrev.1999.79.4.1317. [DOI] [PubMed] [Google Scholar]
  22. Lerche H., Biervert C., Alekov A. K., Schleithoff L., Lindner M., Klinger W., Bretschneider F., Mitrovic N., Jurkat-Rott K., Bode H. A reduced K+ current due to a novel mutation in KCNQ2 causes neonatal convulsions. Ann Neurol. 1999 Sep;46(3):305–312. doi: 10.1002/1531-8249(199909)46:3<305::aid-ana5>3.0.co;2-5. [DOI] [PubMed] [Google Scholar]
  23. Lerche H., Fahlke C., Iaizzo P. A., Lehmann-Horn F. Characterization of the high-conductance Ca(2+)-activated K+ channel in adult human skeletal muscle. Pflugers Arch. 1995 Mar;429(5):738–747. doi: 10.1007/BF00373997. [DOI] [PubMed] [Google Scholar]
  24. Lerche H., Jurkat-Rott K., Lehmann-Horn F. Ion channels and epilepsy. Am J Med Genet. 2001 Summer;106(2):146–159. doi: 10.1002/ajmg.1582. [DOI] [PubMed] [Google Scholar]
  25. Lerche H., Mitrovic N., Dubowitz V., Lehmann-Horn F. Paramyotonia congenita: the R1448P Na+ channel mutation in adult human skeletal muscle. Ann Neurol. 1996 May;39(5):599–608. doi: 10.1002/ana.410390509. [DOI] [PubMed] [Google Scholar]
  26. Lin H., Bhatia R., Lal R. Amyloid beta protein forms ion channels: implications for Alzheimer's disease pathophysiology. FASEB J. 2001 Nov;15(13):2433–2444. doi: 10.1096/fj.01-0377com. [DOI] [PubMed] [Google Scholar]
  27. Mitrović N., George A. L., Jr, Heine R., Wagner S., Pika U., Hartlaub U., Zhou M., Lerche H., Fahlke C., Lehmann-Horn F. K(+)-aggravated myotonia: destabilization of the inactivated state of the human muscle Na+ channel by the V1589M mutation. J Physiol. 1994 Aug 1;478(Pt 3):395–402. doi: 10.1113/jphysiol.1994.sp020260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Noda M., Ikeda T., Suzuki H., Takeshima H., Takahashi T., Kuno M., Numa S. Expression of functional sodium channels from cloned cDNA. 1986 Aug 28-Sep 3Nature. 322(6082):826–828. doi: 10.1038/322826a0. [DOI] [PubMed] [Google Scholar]
  29. Parpura V., Haydon P. G., Henderson E. Three-dimensional imaging of living neurons and glia with the atomic force microscope. J Cell Sci. 1993 Feb;104(Pt 2):427–432. doi: 10.1242/jcs.104.2.427. [DOI] [PubMed] [Google Scholar]
  30. Quasthoff S., Franke C., Hatt H., Richter-Turtur M. Two different types of potassium channels in human skeletal muscle activated by potassium channel openers. Neurosci Lett. 1990 Nov 13;119(2):191–194. doi: 10.1016/0304-3940(90)90831-s. [DOI] [PubMed] [Google Scholar]
  31. Radmacher M., Tillmann R. W., Gaub H. E. Imaging viscoelasticity by force modulation with the atomic force microscope. Biophys J. 1993 Mar;64(3):735–742. doi: 10.1016/S0006-3495(93)81433-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rundfeldt C., Netzer R. The novel anticonvulsant retigabine activates M-currents in Chinese hamster ovary-cells tranfected with human KCNQ2/3 subunits. Neurosci Lett. 2000 Mar 17;282(1-2):73–76. doi: 10.1016/s0304-3940(00)00866-1. [DOI] [PubMed] [Google Scholar]
  33. Seelert H., Poetsch A., Dencher N. A., Engel A., Stahlberg H., Müller D. J. Structural biology. Proton-powered turbine of a plant motor. Nature. 2000 May 25;405(6785):418–419. doi: 10.1038/35013148. [DOI] [PubMed] [Google Scholar]
  34. Snutch T. P., Mandel G. Tissue RNA as source of ion channels and receptors. Methods Enzymol. 1992;207:297–309. doi: 10.1016/0076-6879(92)07019-k. [DOI] [PubMed] [Google Scholar]
  35. Sonnleitner Alois, Mannuzzu Lidia M., Terakawa Susumu, Isacoff Ehud Y. Structural rearrangements in single ion channels detected optically in living cells. Proc Natl Acad Sci U S A. 2002 Sep 12;99(20):12759–12764. doi: 10.1073/pnas.192261499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Soreq H., Seidman S. Xenopus oocyte microinjection: from gene to protein. Methods Enzymol. 1992;207:225–265. doi: 10.1016/0076-6879(92)07016-h. [DOI] [PubMed] [Google Scholar]
  37. Sritharan K. C., Quinn A. S., Taatjes D. J., Jena B. P. Binding contribution between synaptic vesicle membrane and plasma membrane proteins in neurons: an AFM study. Cell Biol Int. 1998;22(9-10):649–655. doi: 10.1006/cbir.1998.0319. [DOI] [PubMed] [Google Scholar]
  38. Stühmer W. Electrophysiological recording from Xenopus oocytes. Methods Enzymol. 1992;207:319–339. doi: 10.1016/0076-6879(92)07021-f. [DOI] [PubMed] [Google Scholar]
  39. Swanson R., Folander K. In vitro synthesis of RNA for expression of ion channels in Xenopus oocytes. Methods Enzymol. 1992;207:310–319. doi: 10.1016/0076-6879(92)07020-o. [DOI] [PubMed] [Google Scholar]
  40. Timpe L. C., Schwarz T. L., Tempel B. L., Papazian D. M., Jan Y. N., Jan L. Y. Expression of functional potassium channels from Shaker cDNA in Xenopus oocytes. Nature. 1988 Jan 14;331(6152):143–145. doi: 10.1038/331143a0. [DOI] [PubMed] [Google Scholar]
  41. Wang H. S., Pan Z., Shi W., Brown B. S., Wymore R. S., Cohen I. S., Dixon J. E., McKinnon D. KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science. 1998 Dec 4;282(5395):1890–1893. doi: 10.1126/science.282.5395.1890. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES