Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Mar;64(3):702–708. doi: 10.1128/iai.64.3.702-708.1996

Proline iminopeptidase from the outer cell envelope of the human oral spirochete Treponema denticola ATCC 35405.

K K Mäkinen 1, C Y Chen 1, P L Mäkinen 1
PMCID: PMC173825  PMID: 8641769

Abstract

Certain periodontopathic organisms have been shown to exhibit high activity of proline iminopeptidase (PIPase). The human oral spirochete Treponema denticola ATCC 35405 was found to contain an easily extractable, novel PIPase (EC 3.4.11.5), which was purified to a sodium dodecyl sulfate- polyacrylamide gel electrophoresis-pure form by means of fast protein liquid chromatographic procedures. The range of the minimum monomeric molecular mass (280 amino acid residues) of the PIPase, based on amino acid analysis, was 30.35 to 30.39 kDa, but the likely in vivo form of the enzyme is a tetramer (minimum mass, 120.2 to 120.4 kDa). The molecular masses based on laser desorption mass spectrometry were 36.058 kDa for the monomer and 72.596 kDa for a dimer. The PIPase cleaves specifically the Pro-Y bond in dipeptides where Y is preferably Arg or Lys. Pro-Gln, Pro-Asn, and Pro-Ala were also good substrates, while Pro-Glu was hydrolyzed slowly and Pro-Asp was not hydrolyzed at all. Tripeptides were poor substrates or were not hydrolyzed (an exception was Pro-Gly-Gly, which cleaved at a moderate rate). Larger molecules, such as poly-L-Pro, were not hydrolyzed. The T. denticola enzyme can be regarded as a true PIPase, since replacing Pro in Pro-Y with other amino acid residues resulted in no hydrolysis. The activity of the PIPase may depend on an active carboxyl group and on an active seryl residue but not on metal cations. Diethylpyrocarbonate inactivated the enzyme in a reaction that was not reversible upon addition of NH2OH. The enzyme contains a relatively large percentage (ca. 15%) of proline residues. The dominance of the PIPase activity among aminopeptidase activities present in T. denticola and the proposed location of the enzyme in the outer cell envelope suggest that it has a vital function in the propagation of the cells within their biological niche (inflamed human periodontal tissues). The biologic role of the PIPase may be envisaged as in the termination of the overall peptidolytic cascade (liberating free proline and other amino acids), whereby host tissue proteins and peptides are first processed and inactivated by other peptidases possibly present within the same confines as the PIPase.

Full Text

The Full Text of this article is available as a PDF (265.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertson N. H., Koomey M. Molecular cloning and characterization of a proline iminopeptidase gene from Neisseria gonorrhoeae. Mol Microbiol. 1993 Sep;9(6):1203–1211. doi: 10.1111/j.1365-2958.1993.tb01249.x. [DOI] [PubMed] [Google Scholar]
  2. Allaker R. P., Young K. A., Hardie J. M. Production of hydrolytic enzymes by oral isolates of Eikenella corrodens. FEMS Microbiol Lett. 1994 Oct 15;123(1-2):69–74. doi: 10.1111/j.1574-6968.1994.tb07203.x. [DOI] [PubMed] [Google Scholar]
  3. Atlan D., Gilbert C., Blanc B., Portalier R. Cloning, sequencing and characterization of the pepIP gene encoding a proline iminopeptidase from Lactobacillus delbrueckii subsp. bulgaricus CNRZ 397. Microbiology. 1994 Mar;140(Pt 3):527–535. doi: 10.1099/00221287-140-3-527. [DOI] [PubMed] [Google Scholar]
  4. Gilbert C., Atlan D., Blanc B., Portalier R. Proline iminopeptidase from Lactobacillus delbrueckii subsp. bulgaricus CNRZ 397: purification and characterization. Microbiology. 1994 Mar;140(Pt 3):537–542. doi: 10.1099/00221287-140-3-537. [DOI] [PubMed] [Google Scholar]
  5. Haapasalo M., Singh U., McBride B. C., Uitto V. J. Sulfhydryl-dependent attachment of Treponema denticola to laminin and other proteins. Infect Immun. 1991 Nov;59(11):4230–4237. doi: 10.1128/iai.59.11.4230-4237.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hunkapiller M. W., Hewick R. M., Dreyer W. J., Hood L. E. High-sensitivity sequencing with a gas-phase sequenator. Methods Enzymol. 1983;91:399–413. doi: 10.1016/s0076-6879(83)91038-8. [DOI] [PubMed] [Google Scholar]
  7. Kitazono A., Ito K., Yoshimoto T. Prolyl aminopeptidase is not a sulfhydryl enzyme: identification of the active serine residue by site-directed mutagenesis. J Biochem. 1994 Nov;116(5):943–945. doi: 10.1093/oxfordjournals.jbchem.a124649. [DOI] [PubMed] [Google Scholar]
  8. Kitazono A., Kitano A., Tsuru D., Yoshimoto T. Isolation and characterization of the prolyl aminopeptidase gene (pap) from Aeromonas sobria: comparison with the Bacillus coagulans enzyme. J Biochem. 1994 Oct;116(4):818–825. doi: 10.1093/oxfordjournals.jbchem.a124601. [DOI] [PubMed] [Google Scholar]
  9. Kitazono A., Yoshimoto T., Tsuru D. Cloning, sequencing, and high expression of the proline iminopeptidase gene from Bacillus coagulans. J Bacteriol. 1992 Dec;174(24):7919–7925. doi: 10.1128/jb.174.24.7919-7925.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Klein J. R., Schmidt U., Plapp R. Cloning, heterologous expression, and sequencing of a novel proline iminopeptidase gene, pepI, from Lactobacillus delbrueckii subsp. lactis DSM 7290. Microbiology. 1994 May;140(Pt 5):1133–1139. doi: 10.1099/13500872-140-5-1133. [DOI] [PubMed] [Google Scholar]
  11. Makinen K. K., Makinen P. L. Purification and properties of an extracellular collagenolytic protease produced by the human oral bacterium Bacillus cereus (strain Soc 67). J Biol Chem. 1987 Sep 15;262(26):12488–12495. [PubMed] [Google Scholar]
  12. Miles E. W. Modification of histidyl residues in proteins by diethylpyrocarbonate. Methods Enzymol. 1977;47:431–442. doi: 10.1016/0076-6879(77)47043-5. [DOI] [PubMed] [Google Scholar]
  13. Mäkinen K. K., Mäkinen P. L., Loesche W. J., Syed S. A. Purification and general properties of an oligopeptidase from Treponema denticola ATCC 35405--a human oral spirochete. Arch Biochem Biophys. 1995 Feb 1;316(2):689–698. doi: 10.1006/abbi.1995.1092. [DOI] [PubMed] [Google Scholar]
  14. Mäkinen K. K., Mäkinen P. L. Purification and characterization of two human erythrocyte arylamidases preferentially hydrolysing N-terminal arginine or lysine residues. Biochem J. 1978 Dec 1;175(3):1051–1067. doi: 10.1042/bj1751051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mäkinen K. K., Mäkinen P. L., Syed S. A. Purification and substrate specificity of an endopeptidase from the human oral spirochete Treponema denticola ATCC 35405, active on furylacryloyl-Leu-Gly-Pro-Ala and bradykinin. J Biol Chem. 1992 Jul 15;267(20):14285–14293. [PubMed] [Google Scholar]
  16. Mäkinen P. L., Clewell D. B., An F., Mäkinen K. K. Purification and substrate specificity of a strongly hydrophobic extracellular metalloendopeptidase ("gelatinase") from Streptococcus faecalis (strain 0G1-10). J Biol Chem. 1989 Feb 25;264(6):3325–3334. [PubMed] [Google Scholar]
  17. Mäkinen P. L., Mäkinen K. K., Syed S. A. An endo-acting proline-specific oligopeptidase from Treponema denticola ATCC 35405: evidence of hydrolysis of human bioactive peptides. Infect Immun. 1994 Nov;62(11):4938–4947. doi: 10.1128/iai.62.11.4938-4947.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mäkinen P. L., Mäkinen K. K., Syed S. A. Role of the chymotrypsin-like membrane-associated proteinase from Treponema denticola ATCC 35405 in inactivation of bioactive peptides. Infect Immun. 1995 Sep;63(9):3567–3575. doi: 10.1128/iai.63.9.3567-3575.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nordwig A., Mayer H. The cleavage of prolyl peptides by kidney peptidases. Detection of a new peptidase capable of removing N-terminal proline. Hoppe Seylers Z Physiol Chem. 1973 Apr;354(4):380–383. doi: 10.1515/bchm2.1973.354.1.380. [DOI] [PubMed] [Google Scholar]
  20. Ohta K., Makinen K. K., Loesche W. J. Purification and characterization of an enzyme produced by Treponema denticola capable of hydrolyzing synthetic trypsin substrates. Infect Immun. 1986 Jul;53(1):213–220. doi: 10.1128/iai.53.1.213-220.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pougeois R., Satre M., Vignais P. V. N-Ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, a new inhibitor of the mitochondrial F1-ATPase. Biochemistry. 1978 Jul 25;17(15):3018–3023. doi: 10.1021/bi00608a013. [DOI] [PubMed] [Google Scholar]
  22. SARID S., BERGER A., KATCHALSKI E. Proline iminopeptidase. II. Purification and comparison with iminodipeptidase (prolinase). J Biol Chem. 1962 Jul;237:2207–2212. [PubMed] [Google Scholar]
  23. SARID S., BERGER A., KATCHALSKI E. Proline iminopeptidase. J Biol Chem. 1959 Jul;234(7):1740–1746. [PubMed] [Google Scholar]
  24. Saccomani G., Barcellona M. L., Sachs G. Reactivity of gastric (H+ + K+)-ATPase to N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline. J Biol Chem. 1981 Dec 10;256(23):12405–12410. [PubMed] [Google Scholar]
  25. Turzynski A., Mentlein R. Prolyl aminopeptidase from rat brain and kidney. Action on peptides and identification as leucyl aminopeptidase. Eur J Biochem. 1990 Jul 5;190(3):509–515. doi: 10.1111/j.1432-1033.1990.tb15603.x. [DOI] [PubMed] [Google Scholar]
  26. Williamson M. P. The structure and function of proline-rich regions in proteins. Biochem J. 1994 Jan 15;297(Pt 2):249–260. doi: 10.1042/bj2970249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yaron A., Naider F. Proline-dependent structural and biological properties of peptides and proteins. Crit Rev Biochem Mol Biol. 1993;28(1):31–81. doi: 10.3109/10409239309082572. [DOI] [PubMed] [Google Scholar]
  28. Yoshimoto T., Saeki T., Tsuru D. Proline iminopeptidase from Bacillus megaterium: purification and characterization. J Biochem. 1983 Feb;93(2):469–477. doi: 10.1093/oxfordjournals.jbchem.a134201. [DOI] [PubMed] [Google Scholar]
  29. Yoshimoto T., Tsuru D. Proline iminopeptidase from Bacillus coagulans: purification and enzymatic properties. J Biochem. 1985 May;97(5):1477–1485. doi: 10.1093/oxfordjournals.jbchem.a135202. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES