Abstract
Objectives: To determine whether patients presenting with a first transient ischaemic attack (TIA) subsequently show increased rates of brain atrophy compared with age matched controls; and to assess potential risk factors for brain atrophy in this group.
Methods: 60 patients with a first, isolated TIA and 26 age and sex matched controls were recruited. None had evidence of cognitive impairment. Vascular risk factors were treated appropriately. All subjects had volumetric imaging at the start of the study and one year later, when they were clinically reassessed. TIA patients also had serial dual echo brain imaging. Rates of whole brain atrophy were calculated from the registered volumetric scans, as was the incidence of new ischaemic lesions. In the TIA group, the degree of white matter disease was assessed. Atrophy rates and blood pressure were compared between patients and controls.
Results: 22 patients (37%) developed new "clinically silent" infarcts during follow up. The mean (SD) annualised percentage atrophy rate in the TIA group was significantly higher than in the controls, at 0.82 (0.39)% v 0.33 (0.3)% (p < 0.0001). In the TIA group, diastolic blood pressure (p = 0.004) and white matter disease severity (p < 0.001) were correlated with cerebral atrophy rate. Increased white matter disease was found in patients in whom new ischaemic lesions developed (p < 0.001).
Conclusions: Patients presenting with a first TIA have excess global brain atrophy compared with age matched controls over the subsequent year. Increased atrophy rates following a TIA may be directly or indirectly related to increasing white matter disease and diastolic hypertension. Future studies should assess whether this atrophy inevitably leads to cognitive decline, and whether aggressive treatment of risk factors for cerebrovascular disease (particularly hypertension) after a TIA can influence outcome.
Full Text
The Full Text of this article is available as a PDF (103.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akiyama H., Meyer J. S., Mortel K. F., Terayama Y., Thornby J. I., Konno S. Normal human aging: factors contributing to cerebral atrophy. J Neurol Sci. 1997 Nov 6;152(1):39–49. doi: 10.1016/s0022-510x(97)00141-x. [DOI] [PubMed] [Google Scholar]
- Bigler E. D., Lowry C. M., Anderson C. V., Johnson S. C., Terry J., Steed M. Dementia, quantitative neuroimaging, and apolipoprotein E genotype. AJNR Am J Neuroradiol. 2000 Nov-Dec;21(10):1857–1868. [PMC free article] [PubMed] [Google Scholar]
- Broderick J. P., Gaskill M., Dhawan A., Khoury J. C. Temporal changes in brain volume and cognition in a randomized treatment trial of vascular dementia. J Neuroimaging. 2001 Jan;11(1):6–12. doi: 10.1111/j.1552-6569.2001.tb00002.x. [DOI] [PubMed] [Google Scholar]
- Christiansen P., Larsson H. B., Thomsen C., Wieslander S. B., Henriksen O. Age dependent white matter lesions and brain volume changes in healthy volunteers. Acta Radiol. 1994 Mar;35(2):117–122. [PubMed] [Google Scholar]
- Dennis M., Bamford J., Sandercock P., Warlow C. Prognosis of transient ischemic attacks in the Oxfordshire Community Stroke Project. Stroke. 1990 Jun;21(6):848–853. doi: 10.1161/01.str.21.6.848. [DOI] [PubMed] [Google Scholar]
- Folstein M. F., Folstein S. E., McHugh P. R. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975 Nov;12(3):189–198. doi: 10.1016/0022-3956(75)90026-6. [DOI] [PubMed] [Google Scholar]
- Forette F., Seux M. L., Staessen J. A., Thijs L., Birkenhäger W. H., Babarskiene M. R., Babeanu S., Bossini A., Gil-Extremera B., Girerd X. Prevention of dementia in randomised double-blind placebo-controlled Systolic Hypertension in Europe (Syst-Eur) trial. Lancet. 1998 Oct 24;352(9137):1347–1351. doi: 10.1016/s0140-6736(98)03086-4. [DOI] [PubMed] [Google Scholar]
- Fox N. C., Scahill R. I., Crum W. R., Rossor M. N. Correlation between rates of brain atrophy and cognitive decline in AD. Neurology. 1999 May 12;52(8):1687–1689. doi: 10.1212/wnl.52.8.1687. [DOI] [PubMed] [Google Scholar]
- Fox N. C., Warrington E. K., Rossor M. N. Serial magnetic resonance imaging of cerebral atrophy in preclinical Alzheimer's disease. Lancet. 1999 Jun 19;353(9170):2125–2125. doi: 10.1016/S0140-6736(99)00496-1. [DOI] [PubMed] [Google Scholar]
- Freeborough P. A., Fox N. C., Kitney R. I. Interactive algorithms for the segmentation and quantitation of 3-D MRI brain scans. Comput Methods Programs Biomed. 1997 May;53(1):15–25. doi: 10.1016/s0169-2607(97)01803-8. [DOI] [PubMed] [Google Scholar]
- Freeborough P. A., Fox N. C. The boundary shift integral: an accurate and robust measure of cerebral volume changes from registered repeat MRI. IEEE Trans Med Imaging. 1997 Oct;16(5):623–629. doi: 10.1109/42.640753. [DOI] [PubMed] [Google Scholar]
- Goldstein L. B., Adams R., Becker K., Furberg C. D., Gorelick P. B., Hademenos G., Hill M., Howard G., Howard V. J., Jacobs B. Primary prevention of ischemic stroke: A statement for healthcare professionals from the Stroke Council of the American Heart Association. Stroke. 2001 Jan;32(1):280–299. doi: 10.1161/01.str.32.1.280. [DOI] [PubMed] [Google Scholar]
- Hankey G. J., Slattery J. M., Warlow C. P. The prognosis of hospital-referred transient ischaemic attacks. J Neurol Neurosurg Psychiatry. 1991 Sep;54(9):793–802. doi: 10.1136/jnnp.54.9.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haring Hans-Peter. Cognitive impairment after stroke. Curr Opin Neurol. 2002 Feb;15(1):79–84. doi: 10.1097/00019052-200202000-00012. [DOI] [PubMed] [Google Scholar]
- Hatazawa J., Yamaguchi T., Ito M., Yamaura H., Matsuzawa T. Association of hypertension with increased atrophy of brain matter in the elderly. J Am Geriatr Soc. 1984 May;32(5):370–374. doi: 10.1111/j.1532-5415.1984.tb02042.x. [DOI] [PubMed] [Google Scholar]
- Kivipelto M., Helkala E. L., Laakso M. P., Hänninen T., Hallikainen M., Alhainen K., Soininen H., Tuomilehto J., Nissinen A. Midlife vascular risk factors and Alzheimer's disease in later life: longitudinal, population based study. BMJ. 2001 Jun 16;322(7300):1447–1451. doi: 10.1136/bmj.322.7300.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koga H., Yuzuriha T., Yao H., Endo K., Hiejima S., Takashima Y., Sadanaga F., Matsumoto T., Uchino A., Ogomori K. Quantitative MRI findings and cognitive impairment among community dwelling elderly subjects. J Neurol Neurosurg Psychiatry. 2002 Jun;72(6):737–741. doi: 10.1136/jnnp.72.6.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kril J. J., Patel S., Harding A. J., Halliday G. M. Patients with vascular dementia due to microvascular pathology have significant hippocampal neuronal loss. J Neurol Neurosurg Psychiatry. 2002 Jun;72(6):747–751. doi: 10.1136/jnnp.72.6.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leys Didier, Deplanque Dominique, Mounier-Vehier Claire, Mackowiak-Cordoliani Marie-Anne, Lucas Christian, Bordet Régis. Stroke prevention: management of modifiable vascular risk factors. J Neurol. 2002 May;249(5):507–517. doi: 10.1007/s004150200057. [DOI] [PubMed] [Google Scholar]
- MacMahon S., Peto R., Cutler J., Collins R., Sorlie P., Neaton J., Abbott R., Godwin J., Dyer A., Stamler J. Blood pressure, stroke, and coronary heart disease. Part 1, Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet. 1990 Mar 31;335(8692):765–774. doi: 10.1016/0140-6736(90)90878-9. [DOI] [PubMed] [Google Scholar]
- Meyer J. S., Rauch G., Rauch R. A., Haque A. Risk factors for cerebral hypoperfusion, mild cognitive impairment, and dementia. Neurobiol Aging. 2000 Mar-Apr;21(2):161–169. doi: 10.1016/s0197-4580(00)00136-6. [DOI] [PubMed] [Google Scholar]
- O'Brien J. T., Paling S., Barber R., Williams E. D., Ballard C., McKeith I. G., Gholkar A., Crum W. R., Rossor M. N., Fox N. C. Progressive brain atrophy on serial MRI in dementia with Lewy bodies, AD, and vascular dementia. Neurology. 2001 May 22;56(10):1386–1388. doi: 10.1212/wnl.56.10.1386. [DOI] [PubMed] [Google Scholar]
- Petrovitch H., White L. R., Izmirilian G., Ross G. W., Havlik R. J., Markesbery W., Nelson J., Davis D. G., Hardman J., Foley D. J. Midlife blood pressure and neuritic plaques, neurofibrillary tangles, and brain weight at death: the HAAS. Honolulu-Asia aging Study. Neurobiol Aging. 2000 Jan-Feb;21(1):57–62. doi: 10.1016/s0197-4580(00)00106-8. [DOI] [PubMed] [Google Scholar]
- Resnick S. M., Goldszal A. F., Davatzikos C., Golski S., Kraut M. A., Metter E. J., Bryan R. N., Zonderman A. B. One-year age changes in MRI brain volumes in older adults. Cereb Cortex. 2000 May;10(5):464–472. doi: 10.1093/cercor/10.5.464. [DOI] [PubMed] [Google Scholar]
- Salerno J. A., Murphy D. G., Horwitz B., DeCarli C., Haxby J. V., Rapoport S. I., Schapiro M. B. Brain atrophy in hypertension. A volumetric magnetic resonance imaging study. Hypertension. 1992 Sep;20(3):340–348. doi: 10.1161/01.hyp.20.3.340. [DOI] [PubMed] [Google Scholar]
- Scahill Rachael I., Schott Jonathan M., Stevens John M., Rossor Martin N., Fox Nick C. Mapping the evolution of regional atrophy in Alzheimer's disease: unbiased analysis of fluid-registered serial MRI. Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4703–4707. doi: 10.1073/pnas.052587399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scheltens P., Barkhof F., Leys D., Pruvo J. P., Nauta J. J., Vermersch P., Steinling M., Valk J. A semiquantative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging. J Neurol Sci. 1993 Jan;114(1):7–12. doi: 10.1016/0022-510x(93)90041-v. [DOI] [PubMed] [Google Scholar]
- Swan G. E., DeCarli C., Miller B. L., Reed T., Wolf P. A., Carmelli D. Biobehavioral characteristics of nondemented older adults with subclinical brain atrophy. Neurology. 2000 Jun 13;54(11):2108–2114. doi: 10.1212/wnl.54.11.2108. [DOI] [PubMed] [Google Scholar]
- de Leeuw F-E, de Groot J. C., Oudkerk M., Witteman J. C. M., Hofman A., van Gijn J., Breteler M. M. B. Hypertension and cerebral white matter lesions in a prospective cohort study. Brain. 2002 Apr;125(Pt 4):765–772. doi: 10.1093/brain/awf077. [DOI] [PubMed] [Google Scholar]
