Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2003 Feb;74(2):217–221. doi: 10.1136/jnnp.74.2.217

Intracerebral microdialysis and CSF hydrodynamics in idiopathic adult hydrocephalus syndrome

A Agren-Wilsson 1, M Roslin 1, A Eklund 1, L Koskinen 1, A Bergenheim 1, J Malm 1
PMCID: PMC1738283  PMID: 12531954

Abstract

Background: In idiopathic adult hydrocephalus syndrome (IAHS), a pathophysiological model of "chronic ischaemia" caused by an arteriosclerotic process in association with a CSF hydrodynamic disturbance has been proposed.

Objective: To investigate whether CSF hydrodynamic manipulation has an impact on biochemical markers related to ischaemia, brain tissue oxygen tension (PtiO2), and intracranial pressure.

Methods: A microdialysis catheter, a PtiO2 probe, and an intracerebral pressure catheter were inserted into the periventricular white matter 0–7 mm from the right frontal horn in 10 patients with IAHS. A subcutaneous microdialysis probe was used as reference. Intracranial pressure and intracerebral PtiO2 were recorded continuously. Samples were collected for analysis between 2 and 4 pm on day 1 (baseline) and at the same time on day 2, two to four hours after a lumbar CSF hydrodynamic manipulation. The concentrations of glucose, lactate, pyruvate, and glutamate on day 1 and 2 were compared.

Results: After CSF drainage, there was a significant rise in the intracerebral concentration of lactate and pyruvate. The lactate to pyruvate ratio was increased and remained unchanged after drainage. There was a trend towards a lowering of glucose and glutamate. Mean intracerebral PtiO2 was higher on day 2 than on day 1 in six of eight patients.

Conclusions: There is increased glucose metabolism after CSF drainage, as expected in a situation of postischaemic recovery. These new invasive techniques are promising tools in the future study of the pathophysiological processes in IAHS.

Full Text

The Full Text of this article is available as a PDF (168.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bech R. A., Juhler M., Waldemar G., Klinken L., Gjerris F. Frontal brain and leptomeningeal biopsy specimens correlated with cerebrospinal fluid outflow resistance and B-wave activity in patients suspected of normal-pressure hydrocephalus. Neurosurgery. 1997 Mar;40(3):497–502. doi: 10.1097/00006123-199703000-00013. [DOI] [PubMed] [Google Scholar]
  2. Blomsterwall E., Svantesson U., Carlsson U., Tullberg M., Wikkelsö C. Postural disturbance in patients with normal pressure hydrocephalus. Acta Neurol Scand. 2000 Nov;102(5):284–291. doi: 10.1034/j.1600-0404.2000.102005284.x. [DOI] [PubMed] [Google Scholar]
  3. Boon A. J., Tans J. T., Delwel E. J., Egeler-Peerdeman S. M., Hanlo P. W., Wurzer H. A., Hermans J. Dutch Normal-Pressure Hydrocephalus Study: the role of cerebrovascular disease. J Neurosurg. 1999 Feb;90(2):221–226. doi: 10.3171/jns.1999.90.2.0221. [DOI] [PubMed] [Google Scholar]
  4. Bradley W. G., Jr, Whittemore A. R., Kortman K. E., Watanabe A. S., Homyak M., Teresi L. M., Davis S. J. Marked cerebrospinal fluid void: indicator of successful shunt in patients with suspected normal-pressure hydrocephalus. Radiology. 1991 Feb;178(2):459–466. doi: 10.1148/radiology.178.2.1987609. [DOI] [PubMed] [Google Scholar]
  5. Chumas P. D., Drake J. M., Del Bigio M. R., Da Silva M., Tuor U. I. Anaerobic glycolysis preceding white-matter destruction in experimental neonatal hydrocephalus. J Neurosurg. 1994 Mar;80(3):491–501. doi: 10.3171/jns.1994.80.3.0491. [DOI] [PubMed] [Google Scholar]
  6. Del Bigio M. R., Zhang Y. W. Cell death, axonal damage, and cell birth in the immature rat brain following induction of hydrocephalus. Exp Neurol. 1998 Nov;154(1):157–169. doi: 10.1006/exnr.1998.6922. [DOI] [PubMed] [Google Scholar]
  7. Dings J., Meixensberger J., Jäger A., Roosen K. Clinical experience with 118 brain tissue oxygen partial pressure catheter probes. Neurosurgery. 1998 Nov;43(5):1082–1095. doi: 10.1097/00006123-199811000-00045. [DOI] [PubMed] [Google Scholar]
  8. Eklund A., Agren-Wilsson A., Andersson N., Bergenheim A. T., Koskinen L. O., Malm J. Two computerized methods used to analyze intracranial pressure B waves: comparison with traditional visual interpretation. J Neurosurg. 2001 Mar;94(3):392–396. doi: 10.3171/jns.2001.94.3.0392. [DOI] [PubMed] [Google Scholar]
  9. Ekstedt J. CSF hydrodynamic studies in man. 1. Method of constant pressure CSF infusion. J Neurol Neurosurg Psychiatry. 1977 Feb;40(2):105–119. doi: 10.1136/jnnp.40.2.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ekstedt J. CSF hydrodynamic studies in man. 2 . Normal hydrodynamic variables related to CSF pressure and flow. J Neurol Neurosurg Psychiatry. 1978 Apr;41(4):345–353. doi: 10.1136/jnnp.41.4.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Erkinjuntti T., Benavente O., Eliasziw M., Munoz D. G., Sulkava R., Haltia M., Hachinski V. Diffuse vacuolization (spongiosis) and arteriolosclerosis in the frontal white matter occurs in vascular dementia. Arch Neurol. 1996 Apr;53(4):325–332. doi: 10.1001/archneur.1996.00550040053014. [DOI] [PubMed] [Google Scholar]
  12. Filippi R., Reisch R., Mauer D., Perneczky A. Brain tissue pO2 related to SjvO2, ICP, and CPP in severe brain injury. Neurosurg Rev. 2000 Jun;23(2):94–97. doi: 10.1007/pl00021700. [DOI] [PubMed] [Google Scholar]
  13. Graff-Radford N. R., Godersky J. C. Idiopathic normal pressure hydrocephalus and systemic hypertension. Neurology. 1987 May;37(5):868–871. doi: 10.1212/wnl.37.5.868. [DOI] [PubMed] [Google Scholar]
  14. Krauss J. K., Regel J. P., Vach W., Droste D. W., Borremans J. J., Mergner T. Vascular risk factors and arteriosclerotic disease in idiopathic normal-pressure hydrocephalus of the elderly. Stroke. 1996 Jan;27(1):24–29. doi: 10.1161/01.str.27.1.24. [DOI] [PubMed] [Google Scholar]
  15. Krauss J. K., Regel J. P., Vach W., Orszagh M., Jüngling F. D., Bohus M., Droste D. W. White matter lesions in patients with idiopathic normal pressure hydrocephalus and in an age-matched control group: a comparative study. Neurosurgery. 1997 Mar;40(3):491–496. doi: 10.1097/00006123-199703000-00011. [DOI] [PubMed] [Google Scholar]
  16. Kristensen B., Malm J., Fagerland M., Hietala S. O., Johansson B., Ekstedt J., Karlsson T. Regional cerebral blood flow, white matter abnormalities, and cerebrospinal fluid hydrodynamics in patients with idiopathic adult hydrocephalus syndrome. J Neurol Neurosurg Psychiatry. 1996 Mar;60(3):282–288. doi: 10.1136/jnnp.60.3.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kristensen B., Malm J., Rabben T. Effects of transient and persistent cerebrospinal fluid drainage on sleep disordered breathing in patients with idiopathic adult hydrocephalus syndrome. J Neurol Neurosurg Psychiatry. 1998 Oct;65(4):497–501. doi: 10.1136/jnnp.65.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Landolt H., Langemann H. Cerebral microdialysis as a diagnostic tool in acute brain injury. Eur J Anaesthesiol. 1996 May;13(3):269–278. doi: 10.1046/j.1365-2346.1996.00975.x. [DOI] [PubMed] [Google Scholar]
  19. Lundkvist B., Eklund A., Kristensen B., Fagerlund M., Koskinen L. O., Malm J. Cerebrospinal fluid hydrodynamics after placement of a shunt with an antisiphon device: a long-term study. J Neurosurg. 2001 May;94(5):750–756. doi: 10.3171/jns.2001.94.5.0750. [DOI] [PubMed] [Google Scholar]
  20. Malm J., Kristensen B., Karlsson T., Fagerlund M., Elfverson J., Ekstedt J. The predictive value of cerebrospinal fluid dynamic tests in patients with th idiopathic adult hydrocephalus syndrome. Arch Neurol. 1995 Aug;52(8):783–789. doi: 10.1001/archneur.1995.00540320059013. [DOI] [PubMed] [Google Scholar]
  21. Persson L., Valtysson J., Enblad P., Warme P. E., Cesarini K., Lewen A., Hillered L. Neurochemical monitoring using intracerebral microdialysis in patients with subarachnoid hemorrhage. J Neurosurg. 1996 Apr;84(4):606–616. doi: 10.3171/jns.1996.84.4.0606. [DOI] [PubMed] [Google Scholar]
  22. Schulz M. K., Wang L. P., Tange M., Bjerre P. Cerebral microdialysis monitoring: determination of normal and ischemic cerebral metabolisms in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2000 Nov;93(5):808–814. doi: 10.3171/jns.2000.93.5.0808. [DOI] [PubMed] [Google Scholar]
  23. Ståhl N., Ungerstedt U., Nordström C. H. Brain energy metabolism during controlled reduction of cerebral perfusion pressure in severe head injuries. Intensive Care Med. 2001 Jul;27(7):1215–1223. doi: 10.1007/s001340101004. [DOI] [PubMed] [Google Scholar]
  24. Tanoi Y., Okeda R., Budka H. Binswanger's encephalopathy: serial sections and morphometry of the cerebral arteries. Acta Neuropathol. 2000 Oct;100(4):347–355. doi: 10.1007/s004010000203. [DOI] [PubMed] [Google Scholar]
  25. Tullberg M., Jensen C., Ekholm S., Wikkelsø C. Normal pressure hydrocephalus: vascular white matter changes on MR images must not exclude patients from shunt surgery. AJNR Am J Neuroradiol. 2001 Oct;22(9):1665–1673. [PMC free article] [PubMed] [Google Scholar]
  26. Vanneste J., Augustijn P., Tan W. F., Dirven C. Shunting normal pressure hydrocephalus: the predictive value of combined clinical and CT data. J Neurol Neurosurg Psychiatry. 1993 Mar;56(3):251–256. doi: 10.1136/jnnp.56.3.251. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES