Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2003 Feb;74(2):208–212. doi: 10.1136/jnnp.74.2.208

Do cognitive patterns of brain magnetic activity correlate with hippocampal atrophy in Alzheimer's disease?

F Maestu 1, J Arrazola 1, A Fernandez 1, P Simos 1, C Amo 1, P Gil-Gregorio 1, S Fernandez 1, A Papanicolaou 1, T Ortiz 1
PMCID: PMC1738307  PMID: 12531952

Abstract

Background: Many reports support the clinical validity of volumetric MRI measurements in Alzheimer's disease.

Objective: To integrate functional brain imaging data derived from magnetoencephalography (MEG) and volumetric data in patients with Alzheimer's disease and in age matched controls.

Methods: MEG data were obtained in the context of a probe-letter memory task. Volumetric measurements were obtained for lateral and mesial temporal lobe regions.

Results: As expected, Alzheimer's disease patients showed greater hippocampal atrophy than controls bilaterally. MEG derived indices of the degree of activation in left parietal and temporal lobe areas, occurring after 400 ms from stimulus onset, correlated significantly with the relative volume of lateral and mesial temporal regions. In addition, the size of the right hippocampus accounted for a significant portion of the variance in cognitive scores independently of brain activity measures.

Conclusions: These data support the view that there is a relation between hippocampal atrophy and the degree of neurophysiological activity in the left temporal lobe.

Full Text

The Full Text of this article is available as a PDF (180.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asahina M., Yoshiyama Y., Hattori T. Expression of matrix metalloproteinase-9 and urinary-type plasminogen activator in Alzheimer's disease brain. Clin Neuropathol. 2001 Mar-Apr;20(2):60–63. [PubMed] [Google Scholar]
  2. Baddeley A. D. Is working memory still working? Am Psychol. 2001 Nov;56(11):851–864. doi: 10.1037/0003-066x.56.11.851. [DOI] [PubMed] [Google Scholar]
  3. Berendse H. W., Verbunt J. P., Scheltens P., van Dijk B. W., Jonkman E. J. Magnetoencephalographic analysis of cortical activity in Alzheimer's disease: a pilot study. Clin Neurophysiol. 2000 Apr;111(4):604–612. doi: 10.1016/s1388-2457(99)00309-0. [DOI] [PubMed] [Google Scholar]
  4. Breier J. I., Simos P. G., Zouridakis G., Papanicolaou A. C. Lateralization of cerebral activation in auditory verbal and non-verbal memory tasks using magnetoencephalography. Brain Topogr. 1999 Winter;12(2):89–97. doi: 10.1023/a:1023458110869. [DOI] [PubMed] [Google Scholar]
  5. Collette Fabienne, Van der Linden Martial. Brain imaging of the central executive component of working memory. Neurosci Biobehav Rev. 2002 Mar;26(2):105–125. doi: 10.1016/s0149-7634(01)00063-x. [DOI] [PubMed] [Google Scholar]
  6. Golebiowski M., Barcikowska M., Pfeffer A. Magnetic resonance imaging-based hippocampal volumetry in patients with dementia of the Alzheimer type. Dement Geriatr Cogn Disord. 1999 Jul-Aug;10(4):284–288. doi: 10.1159/000017133. [DOI] [PubMed] [Google Scholar]
  7. Johnson S. C., Saykin A. J., Baxter L. C., Flashman L. A., Santulli R. B., McAllister T. W., Mamourian A. C. The relationship between fMRI activation and cerebral atrophy: comparison of normal aging and alzheimer disease. Neuroimage. 2000 Mar;11(3):179–187. doi: 10.1006/nimg.1999.0530. [DOI] [PubMed] [Google Scholar]
  8. Kidron D., Black S. E., Stanchev P., Buck B., Szalai J. P., Parker J., Szekely C., Bronskill M. J. Quantitative MR volumetry in Alzheimer's disease. Topographic markers and the effects of sex and education. Neurology. 1997 Dec;49(6):1504–1512. doi: 10.1212/wnl.49.6.1504. [DOI] [PubMed] [Google Scholar]
  9. Killiany R. J., Gomez-Isla T., Moss M., Kikinis R., Sandor T., Jolesz F., Tanzi R., Jones K., Hyman B. T., Albert M. S. Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease. Ann Neurol. 2000 Apr;47(4):430–439. [PubMed] [Google Scholar]
  10. Köhler S., Black S. E., Sinden M., Szekely C., Kidron D., Parker J. L., Foster J. K., Moscovitch M., Winocour G., Szalai J. P. Memory impairments associated with hippocampal versus parahippocampal-gyrus atrophy: an MR volumetry study in Alzheimer's disease. Neuropsychologia. 1998 Sep;36(9):901–914. doi: 10.1016/s0028-3932(98)00017-7. [DOI] [PubMed] [Google Scholar]
  11. Laakso M. P., Hallikainen M., Hänninen T., Partanen K., Soininen H. Diagnosis of Alzheimer's disease: MRI of the hippocampus vs delayed recall. Neuropsychologia. 2000;38(5):579–584. doi: 10.1016/s0028-3932(99)00111-6. [DOI] [PubMed] [Google Scholar]
  12. Lavenex P., Amaral D. G. Hippocampal-neocortical interaction: a hierarchy of associativity. Hippocampus. 2000;10(4):420–430. doi: 10.1002/1098-1063(2000)10:4<420::AID-HIPO8>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  13. Lee Inah, Kesner Raymond P. Differential contribution of NMDA receptors in hippocampal subregions to spatial working memory. Nat Neurosci. 2002 Feb;5(2):162–168. doi: 10.1038/nn790. [DOI] [PubMed] [Google Scholar]
  14. Lobo A., Ezquerra J., Gómez Burgada F., Sala J. M., Seva Díaz A. El miniexamen, cognoscitivo (un "test" sencillo, práctico, para detectar alteraciones intelectuales en pacientes médicos). Actas Luso Esp Neurol Psiquiatr Cienc Afines. 1979 May-Jun;7(3):189–202. [PubMed] [Google Scholar]
  15. Maestú F., Fernández A., Simos P. G., Gil-Gregorio P., Amo C., Rodriguez R., Arrazola J., Ortiz T. Spatio-temporal patterns of brain magnetic activity during a memory task in Alzheimer's disease. Neuroreport. 2001 Dec 21;12(18):3917–3922. doi: 10.1097/00001756-200112210-00013. [DOI] [PubMed] [Google Scholar]
  16. Mitchell Thomas W., Mufson Elliott J., Schneider Julie A., Cochran Elizabeth J., Nissanov Jonathan, Han Li-Ying, Bienias Julia L., Lee Virginia M. -Y, Trojanowski John Q., Bennett David A. Parahippocampal tau pathology in healthy aging, mild cognitive impairment, and early Alzheimer's disease. Ann Neurol. 2002 Feb;51(2):182–189. doi: 10.1002/ana.10086. [DOI] [PubMed] [Google Scholar]
  17. Papanicolaou A. C., Simos P. G., Breier J. I., Zouridakis G., Willmore L. J., Wheless J. W., Constantinou J. E., Maggio W. W., Gormley W. B. Magnetoencephalographic mapping of the language-specific cortex. J Neurosurg. 1999 Jan;90(1):85–93. doi: 10.3171/jns.1999.90.1.0085. [DOI] [PubMed] [Google Scholar]
  18. Pekkonen E., Jäskeläinen I. P., Hietanen M., Huotilainen M., Nätänen R., Ilmoniemi R. J., Erkinjuntti T. Impaired preconscious auditory processing and cognitive functions in Alzheimer's disease. Clin Neurophysiol. 1999 Nov;110(11):1942–1947. doi: 10.1016/s1388-2457(99)00153-4. [DOI] [PubMed] [Google Scholar]
  19. Petersen R. C., Jack C. R., Jr, Xu Y. C., Waring S. C., O'Brien P. C., Smith G. E., Ivnik R. J., Tangalos E. G., Boeve B. F., Kokmen E. Memory and MRI-based hippocampal volumes in aging and AD. Neurology. 2000 Feb 8;54(3):581–587. doi: 10.1212/wnl.54.3.581. [DOI] [PubMed] [Google Scholar]
  20. Rodriguez G., Vitali P., Calvini P., Bordoni C., Girtler N., Taddei G., Mariani G., Nobili F. Hippocampal perfusion in mild Alzheimer's disease. Psychiatry Res. 2000 Dec 4;100(2):65–74. doi: 10.1016/s0925-4927(00)00071-8. [DOI] [PubMed] [Google Scholar]
  21. Sarvas J. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol. 1987 Jan;32(1):11–22. doi: 10.1088/0031-9155/32/1/004. [DOI] [PubMed] [Google Scholar]
  22. Sass K. J., Buchanan C. P., Kraemer S., Westerveld M., Kim J. H., Spencer D. D. Verbal memory impairment resulting from hippocampal neuron loss among epileptic patients with structural lesions. Neurology. 1995 Dec;45(12):2154–2158. doi: 10.1212/wnl.45.12.2154. [DOI] [PubMed] [Google Scholar]
  23. Simos P. G., Breier J. I., Maggio W. W., Gormley W. B., Zouridakis G., Willmore L. J., Wheless J. W., Constantinou J. E., Papanicolaou A. C. Atypical temporal lobe language representation: MEG and intraoperative stimulation mapping correlation. Neuroreport. 1999 Jan 18;10(1):139–142. doi: 10.1097/00001756-199901180-00026. [DOI] [PubMed] [Google Scholar]
  24. Simos P. G., Papanicolaou A. C., Breier J. I., Wheless J. W., Constantinou J. E., Gormley W. B., Maggio W. W. Localization of language-specific cortex by using magnetic source imaging and electrical stimulation mapping. J Neurosurg. 1999 Nov;91(5):787–796. doi: 10.3171/jns.1999.91.5.0787. [DOI] [PubMed] [Google Scholar]
  25. Thompson P. M., Mega M. S., Woods R. P., Zoumalan C. I., Lindshield C. J., Blanton R. E., Moussai J., Holmes C. J., Cummings J. L., Toga A. W. Cortical change in Alzheimer's disease detected with a disease-specific population-based brain atlas. Cereb Cortex. 2001 Jan;11(1):1–16. doi: 10.1093/cercor/11.1.1. [DOI] [PubMed] [Google Scholar]
  26. Wahlund L. O., Julin P., Johansson S. E., Scheltens P. Visual rating and volumetry of the medial temporal lobe on magnetic resonance imaging in dementia: a comparative study. J Neurol Neurosurg Psychiatry. 2000 Nov;69(5):630–635. doi: 10.1136/jnnp.69.5.630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Whitwell J. L., Crum W. R., Watt H. C., Fox N. C. Normalization of cerebral volumes by use of intracranial volume: implications for longitudinal quantitative MR imaging. AJNR Am J Neuroradiol. 2001 Sep;22(8):1483–1489. [PMC free article] [PubMed] [Google Scholar]
  28. Yamaguchi S., Meguro K., Itoh M., Hayasaka C., Shimada M., Yamazaki H., Yamadori A. Decreased cortical glucose metabolism correlates with hippocampal atrophy in Alzheimer's disease as shown by MRI and PET. J Neurol Neurosurg Psychiatry. 1997 Jun;62(6):596–600. doi: 10.1136/jnnp.62.6.596. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES