Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2003 Mar;74(3):299–304. doi: 10.1136/jnnp.74.3.299

Discrete and dynamic scaling of the size of continuous graphic movements of parkinsonian patients and elderly controls

M Longstaff 1, P Mahant 1, M Stacy 1, A W A Van Gemmert 1, B Leis 1, G Stelmach 1
PMCID: PMC1738328  PMID: 12588912

Abstract

Objectives: To systematically investigate the ability of Parkinson's disease patients to discretely and dynamically scale the size of continuous movements and to assess the impact of movement size on outcome variability.

Methods: Ten patients with Parkinson's disease (mean age 72 years) were compared with 12 healthy elderly controls (mean age 70 years). The subjects wrote with a stylus on a graphics tablet. In experiment 1 they drew circles, matching the size of five target circles ranging in magnitude from a radius of 0.5 cm up to 2.5 cm. In experiment 2 they drew spirals with a radius of at least 2 cm. In both experiments the drawings were initially performed as accurately as possible then as fast and accurately as possible.

Results: In both experiments the patients and controls drew at a similar speed. The within trial variability of the pen trajectory was greater for patients than controls, and increased disproportionately with the size of the movement. When the emphasis was on size rather than variability (circles), the patients' drawing movements were the same size as controls. When the emphasis was on accuracy of pen trajectory (that is, minimum variability) rather than size (spirals), the patients' drawing movements were smaller than controls.

Conclusions: The movements made by Parkinson's disease patients are hypometric partly as an adaptive strategy used to reduce movement variability. This strategy is used primarily when the requirement to make accurate movements outweighs the need to make large movements.

Full Text

The Full Text of this article is available as a PDF (171.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alusi S. H., Worthington J., Glickman S., Findley L. J., Bain P. G. Evaluation of three different ways of assessing tremor in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2000 Jun;68(6):756–760. doi: 10.1136/jnnp.68.6.756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bain P. G., Findley L. J., Atchison P., Behari M., Vidailhet M., Gresty M., Rothwell J. C., Thompson P. D., Marsden C. D. Assessing tremor severity. J Neurol Neurosurg Psychiatry. 1993 Aug;56(8):868–873. doi: 10.1136/jnnp.56.8.868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berardelli A., Accornero N., Argenta M., Meco G., Manfredi M. Fast complex arm movements in Parkinson's disease. J Neurol Neurosurg Psychiatry. 1986 Oct;49(10):1146–1149. doi: 10.1136/jnnp.49.10.1146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berardelli A., Rothwell J. C., Thompson P. D., Hallett M. Pathophysiology of bradykinesia in Parkinson's disease. Brain. 2001 Nov;124(Pt 11):2131–2146. doi: 10.1093/brain/124.11.2131. [DOI] [PubMed] [Google Scholar]
  5. Braun C., Heinz U., Schweizer R., Wiech K., Birbaumer N., Topka H. Dynamic organization of the somatosensory cortex induced by motor activity. Brain. 2001 Nov;124(Pt 11):2259–2267. doi: 10.1093/brain/124.11.2259. [DOI] [PubMed] [Google Scholar]
  6. Contreras-Vidal J. L., Teulings H. L., Stelmach G. E. Micrographia in Parkinson's disease. Neuroreport. 1995 Oct 23;6(15):2089–2092. doi: 10.1097/00001756-199510010-00032. [DOI] [PubMed] [Google Scholar]
  7. Dounskaia N., Van Gemmert A. W., Stelmach G. E. Interjoint coordination during handwriting-like movements. Exp Brain Res. 2000 Nov;135(1):127–140. doi: 10.1007/s002210000495. [DOI] [PubMed] [Google Scholar]
  8. Hoehn M. M., Yahr M. D. Parkinsonism: onset, progression and mortality. Neurology. 1967 May;17(5):427–442. doi: 10.1212/wnl.17.5.427. [DOI] [PubMed] [Google Scholar]
  9. Lacquaniti F., Terzuolo C., Viviani P. The law relating the kinematic and figural aspects of drawing movements. Acta Psychol (Amst) 1983 Oct;54(1-3):115–130. doi: 10.1016/0001-6918(83)90027-6. [DOI] [PubMed] [Google Scholar]
  10. Louis E. D., Barnes L. F., Wendt K. J., Albert S. M., Pullman S. L., Yu Q., Schneier F. R. Validity and test-retest reliability of a disability questionnaire for essential tremor. Mov Disord. 2000 May;15(3):516–523. doi: 10.1002/1531-8257(200005)15:3<516::AID-MDS1015>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  11. Martin K. E., Phillips J. G., Iansek R., Bradshaw J. L. Inaccuracy and instability of sequential movements in Parkinson's disease. Exp Brain Res. 1994;102(1):131–140. doi: 10.1007/BF00232445. [DOI] [PubMed] [Google Scholar]
  12. Oliveira R. M., Gurd J. M., Nixon P., Marshall J. C., Passingham R. E. Micrographia in Parkinson's disease: the effect of providing external cues. J Neurol Neurosurg Psychiatry. 1997 Oct;63(4):429–433. doi: 10.1136/jnnp.63.4.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pullman S. L. Spiral analysis: a new technique for measuring tremor with a digitizing tablet. Mov Disord. 1998;13 (Suppl 3):85–89. doi: 10.1002/mds.870131315. [DOI] [PubMed] [Google Scholar]
  14. Rand M. K., Stelmach G. E., Bloedel J. R. Movement accuracy constraints in Parkinson's disease patients. Neuropsychologia. 2000;38(2):203–212. doi: 10.1016/s0028-3932(99)00059-7. [DOI] [PubMed] [Google Scholar]
  15. Sherwood D. E., Schmidt R. A. The relationship between force and force variability in minimal and near-maximal static and dynamic contractions. J Mot Behav. 1980 Mar;12(1):75–89. doi: 10.1080/00222895.1980.10735208. [DOI] [PubMed] [Google Scholar]
  16. Stelmach G. E., Worringham C. J. The preparation and production of isometric force in Parkinson's disease. Neuropsychologia. 1988;26(1):93–103. doi: 10.1016/0028-3932(88)90033-4. [DOI] [PubMed] [Google Scholar]
  17. Teulings H. L., Contreras-Vidal J. L., Stelmach G. E., Adler C. H. Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control. Exp Neurol. 1997 Jul;146(1):159–170. doi: 10.1006/exnr.1997.6507. [DOI] [PubMed] [Google Scholar]
  18. Vaillancourt D. E., Slifkin A. B., Newell K. M. Intermittency in the visual control of force in Parkinson's disease. Exp Brain Res. 2001 May 1;138(1):118–127. doi: 10.1007/s002210100699. [DOI] [PubMed] [Google Scholar]
  19. Van Gemmert A. W., Teulings H. L., Contreras-Vidal J. L., Stelmach G. E. Parkinson's disease and the control of size and speed in handwriting. Neuropsychologia. 1999 Jun;37(6):685–694. doi: 10.1016/s0028-3932(98)00122-5. [DOI] [PubMed] [Google Scholar]
  20. Vinter A., Gras P. Spatial features of angular drawing movements in Parkinson's disease patients. Acta Psychol (Amst) 1998 Nov;100(1-2):177–193. doi: 10.1016/s0001-6918(98)00033-x. [DOI] [PubMed] [Google Scholar]
  21. van Gemmert A. W., Teulings H. L., Stelmach G. E. The influence of mental and motor load on handwriting movements in parkinsonian patients. Acta Psychol (Amst) 1998 Nov;100(1-2):161–175. doi: 10.1016/s0001-6918(98)00032-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES