Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2003 Mar;74(3):339–343. doi: 10.1136/jnnp.74.3.339

A controlled study comparing visual function in patients treated with vigabatrin and tiagabine

G Krauss 1, M Johnson 1, S Sheth 1, N Miller 1
PMCID: PMC1738330  PMID: 12588920

Abstract

Objective: Vigabatrin treatment is frequently associated with irreversible retinal injury and produces retinal electrophysiological changes in nearly all patients. Concern has been raised that tiagabine and other antiepilepsy drugs (AEDs) that increase brain γ-aminobutyric acid (GABA) might produce similar electrophysiological and clinical changes in visual function. The study compared visual function between groups of patients with epilepsy treated long term with tiagabine, vigabatrin, and patients treated with other AEDs.

Methods: A cross sectional study comparing visual acuity, colour vision, static and kinetic perimetry, and electroretinograms between groups of patients treated with tiagabine, vigabatrin, and other AEDs (control patients). Patients were adults receiving stable AED treatment for >6 months.

Results: Vigabatrin treated patients had marked visual field constrictions in kinetic perimetry (mean radius 39.6° OD, 40.5° OS), while tiagabine patients had normal findings (mean 61° OD, 62° OS) (differences OD and OS, p=0.001), which were similar to epilepsy control patients (mean 60° OD, 61° OS). Vigabatrin patients had abnormal electroretinographic photopic B wave, oscillatory, and flicker responses, which correlated with visual field constrictions. These electroretinographic responses were normal for tiagabine patients and control patients. Patients were treated with vigabatrin for a median of 46 months compared with 29 months for tiagabine. Patients taking other AEDs that may change brain GABA had normal visual function.

Conclusion: Unlike vigabatrin, tiagabine treatment is associated with normal electroretinography and visual fields and ophthalmological function similar to epilepsy control patients. Differences between vigabatrin and other GABA modulating AEDs in retinal drug concentrations and other effects might explain why tiagabine increases in GABA reuptake do not cause retinal injury.

Full Text

The Full Text of this article is available as a PDF (171.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ben-Menachem E. Vigabatrin. Epilepsia. 1995;36 (Suppl 2):S95–104. doi: 10.1111/j.1528-1157.1995.tb06003.x. [DOI] [PubMed] [Google Scholar]
  2. Chen Q., Olney J. W., Lukasiewicz P. D., Almli T., Romano C. Ca2+-independent excitotoxic neurodegeneration in isolated retina, an intact neural net: a role for Cl- and inhibitory transmitters. Mol Pharmacol. 1998 Mar;53(3):564–572. doi: 10.1124/mol.53.3.564. [DOI] [PubMed] [Google Scholar]
  3. Coupland S. G., Zackon D. H., Leonard B. C., Ross T. M. Vigabatrin effect on inner retinal function. Ophthalmology. 2001 Aug;108(8):1493–1498. doi: 10.1016/s0161-6420(01)00638-8. [DOI] [PubMed] [Google Scholar]
  4. Fraser C. M., Sills G. J., Butler E., Thompson G. G., Lindsay K., Duncan R., Howatson A., Brodie M. J. Effects of valproate, vigabatrin and tiagabine on GABA uptake into human astrocytes cultured from foetal and adult brain tissue. Epileptic Disord. 1999 Sep;1(3):153–157. [PubMed] [Google Scholar]
  5. Johnson M. A., Krauss G. L., Miller N. R., Medura M., Paul S. R. Visual function loss from vigabatrin: effect of stopping the drug. Neurology. 2000 Jul 12;55(1):40–45. doi: 10.1212/wnl.55.1.40. [DOI] [PubMed] [Google Scholar]
  6. Kaufman K. R., Lepore F. E., Keyser B. J. Visual fields and tiagabine: a quandary. Seizure. 2001 Oct;10(7):525–529. doi: 10.1053/seiz.2001.0543. [DOI] [PubMed] [Google Scholar]
  7. Krauss G. L., Johnson M. A., Miller N. R. Vigabatrin-associated retinal cone system dysfunction: electroretinogram and ophthalmologic findings. Neurology. 1998 Mar;50(3):614–618. doi: 10.1212/wnl.50.3.614. [DOI] [PubMed] [Google Scholar]
  8. Krauss G. L., Miller N. R. Vigabatrin: an effective antiepilepsy drug--balancing the risk of visual dysfunction. Ann Pharmacother. 1999 Dec;33(12):1367–1368. doi: 10.1345/aph.19308. [DOI] [PubMed] [Google Scholar]
  9. Krauss G. L. Using the electroretinogram to detect and monitor the retinal toxicity of anticonvulsants. Neurology. 2001 Jan 9;56(1):140–141. [PubMed] [Google Scholar]
  10. Kuzniecky Ruben, Ho S., Pan J., Martin R., Gilliam F., Faught E., Hetherington H. Modulation of cerebral GABA by topiramate, lamotrigine, and gabapentin in healthy adults. Neurology. 2002 Feb 12;58(3):368–372. doi: 10.1212/wnl.58.3.368. [DOI] [PubMed] [Google Scholar]
  11. Lawden M. C., Eke T., Degg C., Harding G. F., Wild J. M. Visual field defects associated with vigabatrin therapy. J Neurol Neurosurg Psychiatry. 1999 Dec;67(6):716–722. doi: 10.1136/jnnp.67.6.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Meldrum B. S., Chapman A. G. Basic mechanisms of gabitril (tiagabine) and future potential developments. Epilepsia. 1999;40 (Suppl 9):S2–S6. doi: 10.1111/j.1528-1157.1999.tb02087.x. [DOI] [PubMed] [Google Scholar]
  13. Meldrum B. S. Update on the mechanism of action of antiepileptic drugs. Epilepsia. 1996;37 (Suppl 6):S4–11. doi: 10.1111/j.1528-1157.1996.tb06038.x. [DOI] [PubMed] [Google Scholar]
  14. Miller N. R. Using the electroretinogram to detect and monitor the retinal toxicity of anticonvulsants. Neurology. 2000 Aug 8;55(3):333–334. doi: 10.1212/wnl.55.3.333. [DOI] [PubMed] [Google Scholar]
  15. Paul S. R., Krauss G. L., Miller N. R., Medura M. T., Miller T. A., Johnson M. A. Visual function is stable in patients who continue long-term vigabatrin therapy: implications for clinical decision making. Epilepsia. 2001 Apr;42(4):525–530. doi: 10.1046/j.1528-1157.2001.49299.x. [DOI] [PubMed] [Google Scholar]
  16. Petroff O. A., Hyder F., Collins T., Mattson R. H., Rothman D. L. Acute effects of vigabatrin on brain GABA and homocarnosine in patients with complex partial seizures. Epilepsia. 1999 Jul;40(7):958–964. doi: 10.1111/j.1528-1157.1999.tb00803.x. [DOI] [PubMed] [Google Scholar]
  17. Ravindran J., Blumbergs P., Crompton J., Pietris G., Waddy H. Visual field loss associated with vigabatrin: pathological correlations. J Neurol Neurosurg Psychiatry. 2001 Jun;70(6):787–789. doi: 10.1136/jnnp.70.6.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Severns M. L., Johnson M. A. The variability of the b-wave of the electroretinogram with stimulus luminance. Doc Ophthalmol. 1993;84(3):291–299. doi: 10.1007/BF01203661. [DOI] [PubMed] [Google Scholar]
  19. Sills G. J., Butler E., Thompson G. G., Brodie M. J. Vigabatrin and tiagabine are pharmacologically different drugs. A pre-clinical study. Seizure. 1999 Oct;8(7):404–411. doi: 10.1053/seiz.1999.0326. [DOI] [PubMed] [Google Scholar]
  20. Sills G. J., Patsalos P. N., Butler E., Forrest G., Ratnaraj N., Brodie M. J. Visual field constriction: accumulation of vigabatrin but not tiagabine in the retina. Neurology. 2001 Jul 24;57(2):196–200. doi: 10.1212/wnl.57.2.196. [DOI] [PubMed] [Google Scholar]
  21. Standard for clinical electroretinography. International Standardization Committee. Arch Ophthalmol. 1989 Jun;107(6):816–819. doi: 10.1001/archopht.1989.01070010838024. [DOI] [PubMed] [Google Scholar]
  22. Stefan H., Bernatik J., Knorr J. Gesichtsfeldstörungen bei Antiepileptikabehandlung. Nervenarzt. 1999 Jun;70(6):552–555. doi: 10.1007/s001150050479. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES