Abstract
Objectives: Despite many hypotheses, the pathophysiology of syringomyelia is still not well understood. In this report, the authors propose a hypothesis based on analysis of cerebrospinal fluid dynamics in the spine.
Methods: An electric circuit model of the CSF dynamics of the spine was constructed based on a technique of computational fluid mechanics. With this model, the authors calculated how a pulsatile CSF wave coming from the cranial side is propagated along the spinal cord.
Results: Reducing the temporary fluid storage capacity of the cisterna magna dramatically increased the pressure wave propagated along the central canal. The peak of this pressure wave resided in the mid-portion of the spinal cord.
Conclusions: The following hypotheses are proposed. The cisterna magna functions as a shock absorber against the pulsatile CSF waves coming from the cranial side. The loss of shock absorbing capacity of the cisterna magna and subsequent increase of central canal wall pressure leads to syrinx formation in patients with Chiari I malformation.
Full Text
The Full Text of this article is available as a PDF (183.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ball M. J., Dayan A. D. Pathogenesis of syringomyelia. Lancet. 1972 Oct 14;2(7781):799–801. doi: 10.1016/s0140-6736(72)92152-6. [DOI] [PubMed] [Google Scholar]
- Beuls E., Gelan J., Vandersteen M., Adriaensens P., Vanormelingen L., Palmers Y. Microanatomy of the excised human spinal cord and the cervicomedullary junction examined with high-resolution MR imaging at 9.4 Tesla. AJNR Am J Neuroradiol. 1993 May-Jun;14(3):699–707. [PMC free article] [PubMed] [Google Scholar]
- GARDNER W. J., ANGEL J. The cause of syringomyelia and its surgical treatment. Cleve Clin Q. 1958 Jan;25(1):4–8. doi: 10.3949/ccjm.25.1.4. [DOI] [PubMed] [Google Scholar]
- GARDNER W. J. HYDRODYNAMIC MECHANISM OF SYRINGOMYELIA: ITS RELATIONSHIP TO MYELOCELE. J Neurol Neurosurg Psychiatry. 1965 Jun;28:247–259. doi: 10.1136/jnnp.28.3.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glasser S. P. On arterial physiology, pathophysiology of vascular compliance, and cardiovascular disease. Heart Dis. 2000 Sep-Oct;2(5):375–379. [PubMed] [Google Scholar]
- Heiss J. D., Patronas N., DeVroom H. L., Shawker T., Ennis R., Kammerer W., Eidsath A., Talbot T., Morris J., Eskioglu E. Elucidating the pathophysiology of syringomyelia. J Neurosurg. 1999 Oct;91(4):553–562. doi: 10.3171/jns.1999.91.4.0553. [DOI] [PubMed] [Google Scholar]
- Hida K., Iwasaki Y., Koyanagi I., Sawamura Y., Abe H. Surgical indication and results of foramen magnum decompression versus syringosubarachnoid shunting for syringomyelia associated with Chiari I malformation. Neurosurgery. 1995 Oct;37(4):673–679. doi: 10.1227/00006123-199510000-00010. [DOI] [PubMed] [Google Scholar]
- Iskandar B. J., Hedlund G. L., Grabb P. A., Oakes W. J. The resolution of syringohydromyelia without hindbrain herniation after posterior fossa decompression. J Neurosurg. 1998 Aug;89(2):212–216. doi: 10.3171/jns.1998.89.2.0212. [DOI] [PubMed] [Google Scholar]
- Isu T., Sasaki H., Takamura H., Kobayashi N. Foramen magnum decompression with removal of the outer layer of the dura as treatment for syringomyelia occurring with Chiari I malformation. Neurosurgery. 1993 Nov;33(5):845–850. [PubMed] [Google Scholar]
- Iwasaki Y., Abe H. [Surgical treatment for syringomyelia]. No Shinkei Geka. 1996 Aug;24(8):709–716. [PubMed] [Google Scholar]
- Milhorat T. H., Capocelli A. L., Jr, Anzil A. P., Kotzen R. M., Milhorat R. H. Pathological basis of spinal cord cavitation in syringomyelia: analysis of 105 autopsy cases. J Neurosurg. 1995 May;82(5):802–812. doi: 10.3171/jns.1995.82.5.0802. [DOI] [PubMed] [Google Scholar]
- Milhorat T. H., Chou M. W., Trinidad E. M., Kula R. W., Mandell M., Wolpert C., Speer M. C. Chiari I malformation redefined: clinical and radiographic findings for 364 symptomatic patients. Neurosurgery. 1999 May;44(5):1005–1017. doi: 10.1097/00006123-199905000-00042. [DOI] [PubMed] [Google Scholar]
- Milhorat T. H., Kotzen R. M., Anzil A. P. Stenosis of central canal of spinal cord in man: incidence and pathological findings in 232 autopsy cases. J Neurosurg. 1994 Apr;80(4):716–722. doi: 10.3171/jns.1994.80.4.0716. [DOI] [PubMed] [Google Scholar]
- Petit-Lacour M. C., Lasjaunias P., Iffenecker C., Benoudiba F., Hadj Rabia M., Hurth M., Doyon D. Visibility of the central canal on MRI. Neuroradiology. 2000 Oct;42(10):756–761. doi: 10.1007/s002340000373. [DOI] [PubMed] [Google Scholar]
- Raftopoulos C. Surgical treatment of syringomyelia based on magnetic resonance imaging criteria. Neurosurgery. 1993 Sep;33(3):535–536. [PubMed] [Google Scholar]
- Stoodley M. A., Brown S. A., Brown C. J., Jones N. R. Arterial pulsation-dependent perivascular cerebrospinal fluid flow into the central canal in the sheep spinal cord. J Neurosurg. 1997 Apr;86(4):686–693. doi: 10.3171/jns.1997.86.4.0686. [DOI] [PubMed] [Google Scholar]
- Stoodley M. A., Gutschmidt B., Jones N. R. Cerebrospinal fluid flow in an animal model of noncommunicating syringomyelia. Neurosurgery. 1999 May;44(5):1065–1076. doi: 10.1097/00006123-199905000-00068. [DOI] [PubMed] [Google Scholar]
- Tubbs R. S., Elton S., Grabb P., Dockery S. E., Bartolucci A. A., Oakes W. J. Analysis of the posterior fossa in children with the Chiari 0 malformation. Neurosurgery. 2001 May;48(5):1050–1055. doi: 10.1097/00006123-200105000-00016. [DOI] [PubMed] [Google Scholar]
- Yasui K., Hashizume Y., Yoshida M., Kameyama T., Sobue G. Age-related morphologic changes of the central canal of the human spinal cord. Acta Neuropathol. 1999 Mar;97(3):253–259. doi: 10.1007/s004010050982. [DOI] [PubMed] [Google Scholar]