Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Mar;64(3):825–828. doi: 10.1128/iai.64.3.825-828.1996

Protection against endotoxic shock and lipopolysaccharide-induced local inflammation by tetracycline: correlation with inhibition of cytokine secretion.

L Shapira 1, W A Soskolne 1, Y Houri 1, V Barak 1, A Halabi 1, A Stabholz 1
PMCID: PMC173843  PMID: 8641787

Abstract

Septic shock results from excessive stimulation of host immune cells, particularly monocytes and macrophages, by lipopolysaccharide (LPS) released from gram-negative bacteria. Macrophage-derived cytokines, such as tumor necrosis factor alpha (TNF-alpha) and interleukin-1beta (IL-1 beta), have been identified as central mediators in the pathogenesis of septic shock and the resultant mortality. Therefore, these cytokines were targets for experimental therapy for septic shock. Because of tetracycline's ability to intervene in cellular mechanisms involved in cytokine secretion, we tested the effect of tetracycline on LPS-induced septic shock and inflammatory lesions in mice. Tetracycline was found to protect mice against LPS-induced lethality and to abolish clinical signs of LPS-induced inflammatory lesions. This protection correlates with tetracycline's ability to reduce LPS-induced TNF-alpha levels in serum. Furthermore, tetracycline was found to inhibit LPS-induced TNF-alpha and IL-1 beta secretion, but not cytokine mRNA accumulation, in human monocytes in vitro. The results presented here suggest that tetracycline is a potent drug for LPS-induced pathology and that its mechanism of action involves blockage of posttranscriptional events of cytokine production.

Full Text

The Full Text of this article is available as a PDF (237.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashkenazi A., Marsters S. A., Capon D. J., Chamow S. M., Figari I. S., Pennica D., Goeddel D. V., Palladino M. A., Smith D. H. Protection against endotoxic shock by a tumor necrosis factor receptor immunoadhesin. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10535–10539. doi: 10.1073/pnas.88.23.10535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bauss F., Dröge W., Männel D. N. Tumor necrosis factor mediates endotoxic effects in mice. Infect Immun. 1987 Jul;55(7):1622–1625. doi: 10.1128/iai.55.7.1622-1625.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bernard G. R. Sepsis trials. Intersection of investigation, regulation, funding, and practice. Am J Respir Crit Care Med. 1995 Jul;152(1):4–10. doi: 10.1164/ajrccm.152.1.7599855. [DOI] [PubMed] [Google Scholar]
  4. Beutler B., Milsark I. W., Cerami A. C. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science. 1985 Aug 30;229(4716):869–871. doi: 10.1126/science.3895437. [DOI] [PubMed] [Google Scholar]
  5. Bodmer M., Fournel M. A., Hinshaw L. B. Preclinical review of anti-tumor necrosis factor monoclonal antibodies. Crit Care Med. 1993 Oct;21(10 Suppl):S441–S446. doi: 10.1097/00003246-199310001-00005. [DOI] [PubMed] [Google Scholar]
  6. Bone R. C. Gram-negative sepsis. Background, clinical features, and intervention. Chest. 1991 Sep;100(3):802–808. doi: 10.1378/chest.100.3.802. [DOI] [PubMed] [Google Scholar]
  7. Bone R. C. The pathogenesis of sepsis. Ann Intern Med. 1991 Sep 15;115(6):457–469. doi: 10.7326/0003-4819-115-6-457. [DOI] [PubMed] [Google Scholar]
  8. Calandra T., Baumgartner J. D., Grau G. E., Wu M. M., Lambert P. H., Schellekens J., Verhoef J., Glauser M. P. Prognostic values of tumor necrosis factor/cachectin, interleukin-1, interferon-alpha, and interferon-gamma in the serum of patients with septic shock. Swiss-Dutch J5 Immunoglobulin Study Group. J Infect Dis. 1990 May;161(5):982–987. doi: 10.1093/infdis/161.5.982. [DOI] [PubMed] [Google Scholar]
  9. Creasey A. A., Stevens P., Kenney J., Allison A. C., Warren K., Catlett R., Hinshaw L., Taylor F. B., Jr Endotoxin and cytokine profile in plasma of baboons challenged with lethal and sublethal Escherichia coli. Circ Shock. 1991 Feb;33(2):84–91. [PubMed] [Google Scholar]
  10. Debets J. M., Kampmeijer R., van der Linden M. P., Buurman W. A., van der Linden C. J. Plasma tumor necrosis factor and mortality in critically ill septic patients. Crit Care Med. 1989 Jun;17(6):489–494. doi: 10.1097/00003246-198906000-00001. [DOI] [PubMed] [Google Scholar]
  11. Dong Z., O'Brian C. A., Fidler I. J. Activation of tumoricidal properties in macrophages by lipopolysaccharide requires protein-tyrosine kinase activity. J Leukoc Biol. 1993 Jan;53(1):53–60. doi: 10.1002/jlb.53.1.53. [DOI] [PubMed] [Google Scholar]
  12. Dong Z., Qi X., Fidler I. J. Tyrosine phosphorylation of mitogen-activated protein kinases is necessary for activation of murine macrophages by natural and synthetic bacterial products. J Exp Med. 1993 Apr 1;177(4):1071–1077. doi: 10.1084/jem.177.4.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Everaerdt B., Brouckaert P., Shaw A., Fiers W. Four different interleukin-1 species sensitize to the lethal action of tumour necrosis factor. Biochem Biophys Res Commun. 1989 Aug 30;163(1):378–385. doi: 10.1016/0006-291x(89)92146-3. [DOI] [PubMed] [Google Scholar]
  14. Fong Y., Tracey K. J., Moldawer L. L., Hesse D. G., Manogue K. B., Kenney J. S., Lee A. T., Kuo G. C., Allison A. C., Lowry S. F. Antibodies to cachectin/tumor necrosis factor reduce interleukin 1 beta and interleukin 6 appearance during lethal bacteremia. J Exp Med. 1989 Nov 1;170(5):1627–1633. doi: 10.1084/jem.170.5.1627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gabler W. L., Smith J., Tsukuda N. Comparison of doxycycline and a chemically modified tetracycline inhibition of leukocyte functions. Res Commun Chem Pathol Pharmacol. 1992 Nov;78(2):151–160. [PubMed] [Google Scholar]
  16. Goldenthal E. I. A compilation of LD50 values in newborn and adult animals. Toxicol Appl Pharmacol. 1971 Jan;18(1):185–207. doi: 10.1016/0041-008x(71)90328-0. [DOI] [PubMed] [Google Scholar]
  17. Golub L. M., Ramamurthy N. S., McNamara T. F., Greenwald R. A., Rifkin B. R. Tetracyclines inhibit connective tissue breakdown: new therapeutic implications for an old family of drugs. Crit Rev Oral Biol Med. 1991;2(3):297–321. doi: 10.1177/10454411910020030201. [DOI] [PubMed] [Google Scholar]
  18. Grau G. E., Taylor T. E., Molyneux M. E., Wirima J. J., Vassalli P., Hommel M., Lambert P. H. Tumor necrosis factor and disease severity in children with falciparum malaria. N Engl J Med. 1989 Jun 15;320(24):1586–1591. doi: 10.1056/NEJM198906153202404. [DOI] [PubMed] [Google Scholar]
  19. Greenwald R. A., Golub L. M., Lavietes B., Ramamurthy N. S., Gruber B., Laskin R. S., McNamara T. F. Tetracyclines inhibit human synovial collagenase in vivo and in vitro. J Rheumatol. 1987 Feb;14(1):28–32. [PubMed] [Google Scholar]
  20. Hesse D. G., Tracey K. J., Fong Y., Manogue K. R., Palladino M. A., Jr, Cerami A., Shires G. T., Lowry S. F. Cytokine appearance in human endotoxemia and primate bacteremia. Surg Gynecol Obstet. 1988 Feb;166(2):147–153. [PubMed] [Google Scholar]
  21. Hinshaw L. B., Tekamp-Olson P., Chang A. C., Lee P. A., Taylor F. B., Jr, Murray C. K., Peer G. T., Emerson T. E., Jr, Passey R. B., Kuo G. C. Survival of primates in LD100 septic shock following therapy with antibody to tumor necrosis factor (TNF alpha). Circ Shock. 1990 Mar;30(3):279–292. [PubMed] [Google Scholar]
  22. Klosterhalfen B., Hörstmann-Jungemann K., Vogel P., Flohé S., Offner F., Kirkpatrick C. J., Heinrich P. C. Time course of various inflammatory mediators during recurrent endotoxemia. Biochem Pharmacol. 1992 May 28;43(10):2103–2109. doi: 10.1016/0006-2952(92)90167-h. [DOI] [PubMed] [Google Scholar]
  23. Lesslauer W., Tabuchi H., Gentz R., Brockhaus M., Schlaeger E. J., Grau G., Piguet P. F., Pointaire P., Vassalli P., Loetscher H. Recombinant soluble tumor necrosis factor receptor proteins protect mice from lipopolysaccharide-induced lethality. Eur J Immunol. 1991 Nov;21(11):2883–2886. doi: 10.1002/eji.1830211134. [DOI] [PubMed] [Google Scholar]
  24. Marks J. D., Marks C. B., Luce J. M., Montgomery A. B., Turner J., Metz C. A., Murray J. F. Plasma tumor necrosis factor in patients with septic shock. Mortality rate, incidence of adult respiratory distress syndrome, and effects of methylprednisolone administration. Am Rev Respir Dis. 1990 Jan;141(1):94–97. doi: 10.1164/ajrccm/141.1.94. [DOI] [PubMed] [Google Scholar]
  25. Martich G. D., Boujoukos A. J., Suffredini A. F. Response of man to endotoxin. Immunobiology. 1993 Apr;187(3-5):403–416. doi: 10.1016/S0171-2985(11)80353-0. [DOI] [PubMed] [Google Scholar]
  26. Martich G. D., Danner R. L., Ceska M., Suffredini A. F. Detection of interleukin 8 and tumor necrosis factor in normal humans after intravenous endotoxin: the effect of antiinflammatory agents. J Exp Med. 1991 Apr 1;173(4):1021–1024. doi: 10.1084/jem.173.4.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mayoral J. L., Schweich C. J., Dunn D. L. Decreased tumor necrosis factor production during the initial stages of infection correlates with survival during murine gram-negative sepsis. Arch Surg. 1990 Jan;125(1):24–28. doi: 10.1001/archsurg.1990.01410130026003. [DOI] [PubMed] [Google Scholar]
  28. Michie H. R., Manogue K. R., Spriggs D. R., Revhaug A., O'Dwyer S., Dinarello C. A., Cerami A., Wolff S. M., Wilmore D. W. Detection of circulating tumor necrosis factor after endotoxin administration. N Engl J Med. 1988 Jun 9;318(23):1481–1486. doi: 10.1056/NEJM198806093182301. [DOI] [PubMed] [Google Scholar]
  29. Mohler K. M., Sleath P. R., Fitzner J. N., Cerretti D. P., Alderson M., Kerwar S. S., Torrance D. S., Otten-Evans C., Greenstreet T., Weerawarna K. Protection against a lethal dose of endotoxin by an inhibitor of tumour necrosis factor processing. Nature. 1994 Jul 21;370(6486):218–220. doi: 10.1038/370218a0. [DOI] [PubMed] [Google Scholar]
  30. Mózes T., Ben-Efraim S., Tak C. J., Heiligers J. P., Saxena P. R., Bonta I. L. Serum levels of tumor necrosis factor determine the fatal or non-fatal course of endotoxic shock. Immunol Lett. 1991 Feb;27(2):157–162. doi: 10.1016/0165-2478(91)90144-y. [DOI] [PubMed] [Google Scholar]
  31. Offner F., Philippé J., Vogelaers D., Colardyn F., Baele G., Baudrihaye M., Vermeulen A., Leroux-Roels G. Serum tumor necrosis factor levels in patients with infectious disease and septic shock. J Lab Clin Med. 1990 Jul;116(1):100–105. [PubMed] [Google Scholar]
  32. Okusawa S., Gelfand J. A., Ikejima T., Connolly R. J., Dinarello C. A. Interleukin 1 induces a shock-like state in rabbits. Synergism with tumor necrosis factor and the effect of cyclooxygenase inhibition. J Clin Invest. 1988 Apr;81(4):1162–1172. doi: 10.1172/JCI113431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Parrillo J. E. Pathogenetic mechanisms of septic shock. N Engl J Med. 1993 May 20;328(20):1471–1477. doi: 10.1056/NEJM199305203282008. [DOI] [PubMed] [Google Scholar]
  34. Pfeffer K., Matsuyama T., Kündig T. M., Wakeham A., Kishihara K., Shahinian A., Wiegmann K., Ohashi P. S., Krönke M., Mak T. W. Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell. 1993 May 7;73(3):457–467. doi: 10.1016/0092-8674(93)90134-c. [DOI] [PubMed] [Google Scholar]
  35. Raetz C. R. Biochemistry of endotoxins. Annu Rev Biochem. 1990;59:129–170. doi: 10.1146/annurev.bi.59.070190.001021. [DOI] [PubMed] [Google Scholar]
  36. Raetz C. R., Ulevitch R. J., Wright S. D., Sibley C. H., Ding A., Nathan C. F. Gram-negative endotoxin: an extraordinary lipid with profound effects on eukaryotic signal transduction. FASEB J. 1991 Sep;5(12):2652–2660. doi: 10.1096/fasebj.5.12.1916089. [DOI] [PubMed] [Google Scholar]
  37. Redl H., Schlag G., Ceska M., Davies J., Buurman W. A. Interleukin-8 release in baboon septicemia is partially dependent on tumor necrosis factor. J Infect Dis. 1993 Jun;167(6):1464–1466. doi: 10.1093/infdis/167.6.1464. [DOI] [PubMed] [Google Scholar]
  38. Reimann T., Büscher D., Hipskind R. A., Krautwald S., Lohmann-Matthes M. L., Baccarini M. Lipopolysaccharide induces activation of the Raf-1/MAP kinase pathway. A putative role for Raf-1 in the induction of the IL-1 beta and the TNF-alpha genes. J Immunol. 1994 Dec 15;153(12):5740–5749. [PubMed] [Google Scholar]
  39. Remick D. G., Strieter R. M., Eskandari M. K., Nguyen D. T., Genord M. A., Raiford C. L., Kunkel S. L. Role of tumor necrosis factor-alpha in lipopolysaccharide-induced pathologic alterations. Am J Pathol. 1990 Jan;136(1):49–60. [PMC free article] [PubMed] [Google Scholar]
  40. Rossomando E. F., Kennedy J. E., Hadjimichael J. Tumour necrosis factor alpha in gingival crevicular fluid as a possible indicator of periodontal disease in humans. Arch Oral Biol. 1990;35(6):431–434. doi: 10.1016/0003-9969(90)90205-o. [DOI] [PubMed] [Google Scholar]
  41. Rothe J., Lesslauer W., Lötscher H., Lang Y., Koebel P., Köntgen F., Althage A., Zinkernagel R., Steinmetz M., Bluethmann H. Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF-mediated toxicity but highly susceptible to infection by Listeria monocytogenes. Nature. 1993 Aug 26;364(6440):798–802. doi: 10.1038/364798a0. [DOI] [PubMed] [Google Scholar]
  42. Shapira L., Takashiba S., Champagne C., Amar S., Van Dyke T. E. Involvement of protein kinase C and protein tyrosine kinase in lipopolysaccharide-induced TNF-alpha and IL-1 beta production by human monocytes. J Immunol. 1994 Aug 15;153(4):1818–1824. [PubMed] [Google Scholar]
  43. Stashenko P., Jandinski J. J., Fujiyoshi P., Rynar J., Socransky S. S. Tissue levels of bone resorptive cytokines in periodontal disease. J Periodontol. 1991 Aug;62(8):504–509. doi: 10.1902/jop.1991.62.8.504. [DOI] [PubMed] [Google Scholar]
  44. Strieter R. M., Kunkel S. L., Bone R. C. Role of tumor necrosis factor-alpha in disease states and inflammation. Crit Care Med. 1993 Oct;21(10 Suppl):S447–S463. doi: 10.1097/00003246-199310001-00006. [DOI] [PubMed] [Google Scholar]
  45. Suffredini A. F., Fromm R. E., Parker M. M., Brenner M., Kovacs J. A., Wesley R. A., Parrillo J. E. The cardiovascular response of normal humans to the administration of endotoxin. N Engl J Med. 1989 Aug 3;321(5):280–287. doi: 10.1056/NEJM198908033210503. [DOI] [PubMed] [Google Scholar]
  46. Takashiba S., Van Dyke T. E., Shapira L., Amar S. Lipopolysaccharide-inducible and salicylate-sensitive nuclear factor(s) on human tumor necrosis factor alpha promoter. Infect Immun. 1995 Apr;63(4):1529–1534. doi: 10.1128/iai.63.4.1529-1534.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tracey K. J., Fong Y., Hesse D. G., Manogue K. R., Lee A. T., Kuo G. C., Lowry S. F., Cerami A. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature. 1987 Dec 17;330(6149):662–664. doi: 10.1038/330662a0. [DOI] [PubMed] [Google Scholar]
  48. Van Zee K. J., Kohno T., Fischer E., Rock C. S., Moldawer L. L., Lowry S. F. Tumor necrosis factor soluble receptors circulate during experimental and clinical inflammation and can protect against excessive tumor necrosis factor alpha in vitro and in vivo. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4845–4849. doi: 10.1073/pnas.89.11.4845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Waage A., Espevik T. Interleukin 1 potentiates the lethal effect of tumor necrosis factor alpha/cachectin in mice. J Exp Med. 1988 Jun 1;167(6):1987–1992. doi: 10.1084/jem.167.6.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Waage A., Halstensen A., Espevik T. Association between tumour necrosis factor in serum and fatal outcome in patients with meningococcal disease. Lancet. 1987 Feb 14;1(8529):355–357. doi: 10.1016/s0140-6736(87)91728-4. [DOI] [PubMed] [Google Scholar]
  51. Walsh C. J., Sugerman H. J., Mullen P. G., Carey P. D., Leeper-Woodford S. K., Jesmok G. J., Ellis E. F., Fowler A. A. Monoclonal antibody to tumor necrosis factor alpha attenuates cardiopulmonary dysfunction in porcine gram-negative sepsis. Arch Surg. 1992 Feb;127(2):138–145. doi: 10.1001/archsurg.1992.01420020020003. [DOI] [PubMed] [Google Scholar]
  52. Webster G. F., Toso S. M., Hegemann L. Inhibition of a model of in vitro granuloma formation by tetracyclines and ciprofloxacin. Involvement of protein kinase C. Arch Dermatol. 1994 Jun;130(6):748–752. [PubMed] [Google Scholar]
  53. Weinstein S. L., Gold M. R., DeFranco A. L. Bacterial lipopolysaccharide stimulates protein tyrosine phosphorylation in macrophages. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4148–4152. doi: 10.1073/pnas.88.10.4148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Weinstein S. L., Sanghera J. S., Lemke K., DeFranco A. L., Pelech S. L. Bacterial lipopolysaccharide induces tyrosine phosphorylation and activation of mitogen-activated protein kinases in macrophages. J Biol Chem. 1992 Jul 25;267(21):14955–14962. [PubMed] [Google Scholar]
  55. Windsor A. C., Mullen P. G., Walsh C. J., Fisher B. J., Blocher C. R., Jesmok G., Fowler A. A., 3rd, Sugerman H. J. Delayed tumor necrosis factor alpha blockade attenuates pulmonary dysfunction and metabolic acidosis associated with experimental gram-negative sepsis. Arch Surg. 1994 Jan;129(1):80–89. doi: 10.1001/archsurg.1994.01420250092012. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES