Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Mar;64(3):836–841. doi: 10.1128/iai.64.3.836-841.1996

Expression of major surface protein 2 antigenic variants during acute Anaplasma marginale rickettsemia.

G Eid 1, D M French 1, A M Lundgren 1, A F Barbet 1, T F McElwain 1, G H Palmer 1
PMCID: PMC173845  PMID: 8641789

Abstract

Antigenic variants of Anaplasma marginale major surface protein 2 (MSP-2), a target of protective immune responses, have been detected by use of copy-specific monoclonal antibodies reactive with some, but not all, organisms during acute rickettsemia. The presence of polymorphic msp-2 genes was confirmed by cloning and sequencing two gene copies, 11.2 and DF5, each of which encodes a full-length MSP-2 with a unique amino acid sequence. Transcription of msp-2 genes during acute rickettsemia was analyzed by use of cDNA cloning of hybrid-selected msp-2 mRNA. Sequencing of cDNA clones, designated AR1 to AR14, indicated that DF5 msp-2 was transcribed during acute rickettsemia. Two classes of variant msp-2 genes were also transcribed during acute rickettsemia. The first class of variant transcripts, typified by clones AR3, AR4, AR7, and AR14, each encoded a single or small number of amino acid substitutions relative to DF5. The second type, AR5, encoded a large region of amino acid polymorphism, including additions, deletions, and substitutions, as compared to DF5. Specific antibody directed against the AR5 polymorphic region bound a unique MSP-2 expressed on A. marginale that was not recognized by antibody generated against DF5. Similarly, anti-AR5 peptide antibody reacted with a different MSP-2 that was not bound by anti-DF5 antibody. This expression confirmed that variant msp-2 transcripts encode structurally distinct MSP-2 molecules which bear unique B-cell epitopes. These results support the hypothesis that the large msp-2 gene family, which constitutes a minimum of 1% of the genome, encodes antigenic variants critical to evasion of protective immune response directed against surface MSP-2 epitopes.

Full Text

The Full Text of this article is available as a PDF (395.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auffray C., Rougeon F. Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur J Biochem. 1980 Jun;107(2):303–314. doi: 10.1111/j.1432-1033.1980.tb06030.x. [DOI] [PubMed] [Google Scholar]
  2. Barbet A. F., Anderson L. W., Palmer G. H., McGuire T. C. Comparison of proteins synthesized by two different isolates of Anaplasma marginale. Infect Immun. 1983 Jun;40(3):1068–1074. doi: 10.1128/iai.40.3.1068-1074.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Eriks I. S., Palmer G. H., McGuire T. C., Allred D. R., Barbet A. F. Detection and quantitation of Anaplasma marginale in carrier cattle by using a nucleic acid probe. J Clin Microbiol. 1989 Feb;27(2):279–284. doi: 10.1128/jcm.27.2.279-284.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eriks I. S., Stiller D., Goff W. L., Panton M., Parish S. M., McElwain T. F., Palmer G. H. Molecular and biological characterization of a newly isolated Anaplasma marginale strain. J Vet Diagn Invest. 1994 Oct;6(4):435–441. doi: 10.1177/104063879400600406. [DOI] [PubMed] [Google Scholar]
  5. Eriks I. S., Stiller D., Palmer G. H. Impact of persistent Anaplasma marginale rickettsemia on tick infection and transmission. J Clin Microbiol. 1993 Aug;31(8):2091–2096. doi: 10.1128/jcm.31.8.2091-2096.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kieser S. T., Eriks I. S., Palmer G. H. Cyclic rickettsemia during persistent Anaplasma marginale infection of cattle. Infect Immun. 1990 Apr;58(4):1117–1119. doi: 10.1128/iai.58.4.1117-1119.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. McGuire T. C., Palmer G. H., Goff W. L., Johnson M. I., Davis W. C. Common and isolate-restricted antigens of Anaplasma marginale detected with monoclonal antibodies. Infect Immun. 1984 Sep;45(3):697–700. doi: 10.1128/iai.45.3.697-700.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Palmer G. H., Barbet A. F., Davis W. C., McGuire T. C. Immunization with an isolate-common surface protein protects cattle against anaplasmosis. Science. 1986 Mar 14;231(4743):1299–1302. doi: 10.1126/science.3945825. [DOI] [PubMed] [Google Scholar]
  9. Palmer G. H., Eid G., Barbet A. F., McGuire T. C., McElwain T. F. The immunoprotective Anaplasma marginale major surface protein 2 is encoded by a polymorphic multigene family. Infect Immun. 1994 Sep;62(9):3808–3816. doi: 10.1128/iai.62.9.3808-3816.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Palmer G. H., Kocan K. M., Barron S. J., Hair J. A., Barbet A. F., Davis W. C., McGuire T. C. Presence of common antigens, including major surface protein epitopes, between the cattle (intraerythrocytic) and tick stages of Anaplasma marginale. Infect Immun. 1985 Dec;50(3):881–886. doi: 10.1128/iai.50.3.881-886.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Palmer G. H., McElwain T. F. Molecular basis for vaccine development against anaplasmosis and babesiosis. Vet Parasitol. 1995 Mar;57(1-3):233–253. doi: 10.1016/0304-4017(94)03123-e. [DOI] [PubMed] [Google Scholar]
  12. Palmer G. H., McGuire T. C. Immune serum against Anaplasma marginale initial bodies neutralizes infectivity for cattle. J Immunol. 1984 Aug;133(2):1010–1015. [PubMed] [Google Scholar]
  13. Palmer G. H., Munodzana D., Tebele N., Ushe T., McElwain T. F. Heterologous strain challenge of cattle immunized with Anaplasma marginale outer membranes. Vet Immunol Immunopathol. 1994 Sep;42(3-4):265–273. doi: 10.1016/0165-2427(94)90072-8. [DOI] [PubMed] [Google Scholar]
  14. Palmer G. H., Oberle S. M., Barbet A. F., Goff W. L., Davis W. C., McGuire T. C. Immunization of cattle with a 36-kilodalton surface protein induces protection against homologous and heterologous Anaplasma marginale challenge. Infect Immun. 1988 Jun;56(6):1526–1531. doi: 10.1128/iai.56.6.1526-1531.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tebele N., McGuire T. C., Palmer G. H. Induction of protective immunity by using Anaplasma marginale initial body membranes. Infect Immun. 1991 Sep;59(9):3199–3204. doi: 10.1128/iai.59.9.3199-3204.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Van der Ploeg L. H., Liu A. Y., Michels P. A., De Lange T., Borst P., Majumder H. K., Weber H., Veeneman G. H., Van Boom J. RNA splicing is required to make the messenger RNA for a variant surface antigen in trypanosomes. Nucleic Acids Res. 1982 Jun 25;10(12):3591–3604. doi: 10.1093/nar/10.12.3591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Zakimi S., Tsuji N., Fujisaki K. Protein analysis of Anaplasma marginale and Anaplasma centrale by two-dimensional polyacrylamide gel electrophoresis. J Vet Med Sci. 1994 Oct;56(5):1025–1027. doi: 10.1292/jvms.56.1025. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES