Abstract
Background: After head injury, impaired cerebrovascular autoregulation has been associated with abnormally high or low cerebral blood flow. The physiological relevance of cerebral blood flow levels is difficult to assess in these patients, whose cerebral metabolic rate for oxygen (CMRO2) is known to be abnormal. Investigation of these relations requires quantitative measures of cerebral blood flow and CMRO2, to allow assessment of oxygen supply and demand relations.
Objectives: To investigate the relation between dysautoregulation and global cerebral oxygen metabolism following head injury.
Methods: Using positron emission tomography, global cerebral blood flow, CMRO2, and oxygen extraction fraction were determined in 22 patients who were investigated in 26 examinations on days 1 to 11 (mean (SD), 3.5 (2.3)) after head injury. Cerebrovascular pressure reactivity was assessed using a pressure reactivity index, calculated as the moving linear correlation coefficient between mean arterial blood pressure and intracranial pressure. Outcome was assessed six months after injury using the Glasgow outcome scale.
Results: Low CMRO2 was associated with disturbed pressure reactivity (inverse function, R2 = 0.21, p = 0.018) and there was a correlation between disturbed pressure reactivity and oxygen extraction fraction (quadratic function, R2 = 0.55, p = 0.0001). There was no significant relation between pressure reactivity and cerebral blood flow. An unfavourable outcome was associated with disturbed pressure reactivity. There was no significant relation between outcome and CMRO2 or oxygen extraction fraction.
Conclusions: There is a close relation between dysautoregulation and abnormal cerebral metabolism but not blood flow. Further studies are needed to determine whether metabolic dysfunction is a result of or a cause of disturbed pressure reactivity, and to establish if there is a relation between cerebral oxygen metabolism and outcome.
Full Text
The Full Text of this article is available as a PDF (191.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Armstead W. M. Brain injury impairs ATP-sensitive K+ channel function in piglet cerebral arteries. Stroke. 1997 Nov;28(11):2273–2280. doi: 10.1161/01.str.28.11.2273. [DOI] [PubMed] [Google Scholar]
- Armstead W. M. Role of impaired cAMP and calcium-sensitive K+ channel function in altered cerebral hemodynamics following brain injury. Brain Res. 1997 Sep 12;768(1-2):177–184. doi: 10.1016/s0006-8993(97)00641-0. [DOI] [PubMed] [Google Scholar]
- Baron J. C., Frackowiak R. S., Herholz K., Jones T., Lammertsma A. A., Mazoyer B., Wienhard K. Use of PET methods for measurement of cerebral energy metabolism and hemodynamics in cerebrovascular disease. J Cereb Blood Flow Metab. 1989 Dec;9(6):723–742. doi: 10.1038/jcbfm.1989.105. [DOI] [PubMed] [Google Scholar]
- Bergsneider M., Hovda D. A., Lee S. M., Kelly D. F., McArthur D. L., Vespa P. M., Lee J. H., Huang S. C., Martin N. A., Phelps M. E. Dissociation of cerebral glucose metabolism and level of consciousness during the period of metabolic depression following human traumatic brain injury. J Neurotrauma. 2000 May;17(5):389–401. doi: 10.1089/neu.2000.17.389. [DOI] [PubMed] [Google Scholar]
- Bullock R., Sakas D., Patterson J., Wyper D., Hadley D., Maxwell W., Teasdale G. M. Early post-traumatic cerebral blood flow mapping: correlation with structural damage after focal injury. Acta Neurochir Suppl (Wien) 1992;55:14–17. doi: 10.1007/978-3-7091-9233-7_5. [DOI] [PubMed] [Google Scholar]
- Compton J. S., Teddy P. J. Cerebral arterial vasospasm following severe head injury: a transcranial Doppler study. Br J Neurosurg. 1987;1(4):435–439. doi: 10.3109/02688698708999633. [DOI] [PubMed] [Google Scholar]
- Czosnyka M., Smielewski P., Kirkpatrick P., Laing R. J., Menon D., Pickard J. D. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997 Jul;41(1):11–19. doi: 10.1097/00006123-199707000-00005. [DOI] [PubMed] [Google Scholar]
- Czosnyka M., Smielewski P., Kirkpatrick P., Menon D. K., Pickard J. D. Monitoring of cerebral autoregulation in head-injured patients. Stroke. 1996 Oct;27(10):1829–1834. doi: 10.1161/01.str.27.10.1829. [DOI] [PubMed] [Google Scholar]
- Czosnyka M., Smielewski P., Piechnik S., Steiner L. A., Pickard J. D. Cerebral autoregulation following head injury. J Neurosurg. 2001 Nov;95(5):756–763. doi: 10.3171/jns.2001.95.5.0756. [DOI] [PubMed] [Google Scholar]
- Frackowiak R. S., Lenzi G. L., Jones T., Heather J. D. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr. 1980 Dec;4(6):727–736. doi: 10.1097/00004728-198012000-00001. [DOI] [PubMed] [Google Scholar]
- Harris R. J., Symon L. Extracellular pH, potassium, and calcium activities in progressive ischaemia of rat cortex. J Cereb Blood Flow Metab. 1984 Jun;4(2):178–186. doi: 10.1038/jcbfm.1984.26. [DOI] [PubMed] [Google Scholar]
- Herscovitch P., Raichle M. E. What is the correct value for the brain--blood partition coefficient for water? J Cereb Blood Flow Metab. 1985 Mar;5(1):65–69. doi: 10.1038/jcbfm.1985.9. [DOI] [PubMed] [Google Scholar]
- Jennett B., Bond M. Assessment of outcome after severe brain damage. Lancet. 1975 Mar 1;1(7905):480–484. doi: 10.1016/s0140-6736(75)92830-5. [DOI] [PubMed] [Google Scholar]
- Kanno I., Iida H., Miura S., Murakami M., Takahashi K., Sasaki H., Inugami A., Shishido F., Uemura K. A system for cerebral blood flow measurement using an H215O autoradiographic method and positron emission tomography. J Cereb Blood Flow Metab. 1987 Apr;7(2):143–153. doi: 10.1038/jcbfm.1987.37. [DOI] [PubMed] [Google Scholar]
- Kanno I., Lammertsma A. A., Heather J. D., Gibbs J. M., Rhodes C. G., Clark J. C., Jones T. Measurement of cerebral blood flow using bolus inhalation of C15O2 and positron emission tomography: description of the method and its comparison with the C15O2 continuous inhalation method. J Cereb Blood Flow Metab. 1984 Jun;4(2):224–234. doi: 10.1038/jcbfm.1984.31. [DOI] [PubMed] [Google Scholar]
- Kontos H. A., Wei E. P. Superoxide production in experimental brain injury. J Neurosurg. 1986 May;64(5):803–807. doi: 10.3171/jns.1986.64.5.0803. [DOI] [PubMed] [Google Scholar]
- Lam J. M., Hsiang J. N., Poon W. S. Monitoring of autoregulation using laser Doppler flowmetry in patients with head injury. J Neurosurg. 1997 Mar;86(3):438–445. doi: 10.3171/jns.1997.86.3.0438. [DOI] [PubMed] [Google Scholar]
- Lammertsma A. A., Jones T., Frackowiak R. S., Lenzi G. L. A theoretical study of the steady-state model for measuring regional cerebral blood flow and oxygen utilisation using oxygen-15. J Comput Assist Tomogr. 1981 Aug;5(4):544–550. doi: 10.1097/00004728-198108000-00016. [DOI] [PubMed] [Google Scholar]
- Lammertsma A. A., Martin A. J., Friston K. J., Jones T. In vivo measurement of the volume of distribution of water in cerebral grey matter: effects on the calculation of regional cerebral blood flow. J Cereb Blood Flow Metab. 1992 Mar;12(2):291–295. doi: 10.1038/jcbfm.1992.39. [DOI] [PubMed] [Google Scholar]
- Marchal G., Benali K., Iglesias S., Viader F., Derlon J. M., Baron J. C. Voxel-based mapping of irreversible ischaemic damage with PET in acute stroke. Brain. 1999 Dec;122(Pt 12):2387–2400. doi: 10.1093/brain/122.12.2387. [DOI] [PubMed] [Google Scholar]
- Marshall L. F., Marshall S. B., Klauber M. R., Van Berkum Clark M., Eisenberg H., Jane J. A., Luerssen T. G., Marmarou A., Foulkes M. A. The diagnosis of head injury requires a classification based on computed axial tomography. J Neurotrauma. 1992 Mar;9 (Suppl 1):S287–S292. [PubMed] [Google Scholar]
- Newell D. W., Aaslid R., Stooss R., Seiler R. W., Reulen H. J. Evaluation of hemodynamic responses in head injury patients with transcranial Doppler monitoring. Acta Neurochir (Wien) 1997;139(9):804–817. doi: 10.1007/BF01411398. [DOI] [PubMed] [Google Scholar]
- Obrist W. D., Langfitt T. W., Jaggi J. L., Cruz J., Gennarelli T. A. Cerebral blood flow and metabolism in comatose patients with acute head injury. Relationship to intracranial hypertension. J Neurosurg. 1984 Aug;61(2):241–253. doi: 10.3171/jns.1984.61.2.0241. [DOI] [PubMed] [Google Scholar]
- Oshima T., Karasawa F., Satoh T. Effects of propofol on cerebral blood flow and the metabolic rate of oxygen in humans. Acta Anaesthesiol Scand. 2002 Aug;46(7):831–835. doi: 10.1034/j.1399-6576.2002.460713.x. [DOI] [PubMed] [Google Scholar]
- Overgaard J., Tweed W. A. Cerebral circulation after head injury. 1. Cerebral blood flow and its regulation after closed head injury with emphasis on clinical correlations. J Neurosurg. 1974 Nov;41(5):531–541. doi: 10.3171/jns.1974.41.5.0531. [DOI] [PubMed] [Google Scholar]
- Petrov T., Rafols J. A. Acute alterations of endothelin-1 and iNOS expression and control of the brain microcirculation after head trauma. Neurol Res. 2001 Mar-Apr;23(2-3):139–143. doi: 10.1179/016164101101198479. [DOI] [PubMed] [Google Scholar]
- Rosner M. J., Rosner S. D., Johnson A. H. Cerebral perfusion pressure: management protocol and clinical results. J Neurosurg. 1995 Dec;83(6):949–962. doi: 10.3171/jns.1995.83.6.0949. [DOI] [PubMed] [Google Scholar]
- Schröder M. L., Muizelaar J. P., Bullock M. R., Salvant J. B., Povlishock J. T. Focal ischemia due to traumatic contusions documented by stable xenon-CT and ultrastructural studies. J Neurosurg. 1995 Jun;82(6):966–971. doi: 10.3171/jns.1995.82.6.0966. [DOI] [PubMed] [Google Scholar]
- Steiner Luzius A., Czosnyka Marek, Piechnik Stefan K., Smielewski Piotr, Chatfield Doris, Menon David K., Pickard John D. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002 Apr;30(4):733–738. doi: 10.1097/00003246-200204000-00002. [DOI] [PubMed] [Google Scholar]
- Strebel S., Lam A. M., Matta B., Mayberg T. S., Aaslid R., Newell D. W. Dynamic and static cerebral autoregulation during isoflurane, desflurane, and propofol anesthesia. Anesthesiology. 1995 Jul;83(1):66–76. doi: 10.1097/00000542-199507000-00008. [DOI] [PubMed] [Google Scholar]
- Studholme C., Hill D. L., Hawkes D. J. Automated 3-D registration of MR and CT images of the head. Med Image Anal. 1996 Jun;1(2):163–175. doi: 10.1016/s1361-8415(96)80011-9. [DOI] [PubMed] [Google Scholar]
- Studholme C., Hill D. L., Hawkes D. J. Automated three-dimensional registration of magnetic resonance and positron emission tomography brain images by multiresolution optimization of voxel similarity measures. Med Phys. 1997 Jan;24(1):25–35. doi: 10.1118/1.598130. [DOI] [PubMed] [Google Scholar]
- Verweij B. H., Muizelaar J. P., Vinas F. C., Peterson P. L., Xiong Y., Lee C. P. Impaired cerebral mitochondrial function after traumatic brain injury in humans. J Neurosurg. 2000 Nov;93(5):815–820. doi: 10.3171/jns.2000.93.5.0815. [DOI] [PubMed] [Google Scholar]
- Verweij B. H., Muizelaar J. P., Vinas F. C., Peterson P. L., Xiong Y., Lee C. P. Improvement in mitochondrial dysfunction as a new surrogate efficiency measure for preclinical trials: dose-response and time-window profiles for administration of the calcium channel blocker Ziconotide in experimental brain injury. J Neurosurg. 2000 Nov;93(5):829–834. doi: 10.3171/jns.2000.93.5.0829. [DOI] [PubMed] [Google Scholar]
- Xiong Y., Peterson P. L., Muizelaar J. P., Lee C. P. Amelioration of mitochondrial function by a novel antioxidant U-101033E following traumatic brain injury in rats. J Neurotrauma. 1997 Dec;14(12):907–917. doi: 10.1089/neu.1997.14.907. [DOI] [PubMed] [Google Scholar]
- Xiong Y., Peterson P. L., Verweij B. H., Vinas F. C., Muizelaar J. P., Lee C. P. Mitochondrial dysfunction after experimental traumatic brain injury: combined efficacy of SNX-111 and U-101033E. J Neurotrauma. 1998 Jul;15(7):531–544. doi: 10.1089/neu.1998.15.531. [DOI] [PubMed] [Google Scholar]