Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2003 Jun;74(6):771–778. doi: 10.1136/jnnp.74.6.771

Vestibular activation by bone conducted sound

M Welgampola 1, S Rosengren 1, G Halmagyi 1, J Colebatch 1
PMCID: PMC1738493  PMID: 12754349

Abstract

Objective: To examine the properties and potential clinical uses of myogenic potentials to bone conducted sound.

Methods: Myogenic potentials were recorded from normal volunteers, using bone conducted tone bursts of 7 ms duration and 250–2000 Hz frequencies delivered over the mastoid processes by a B 71 clinical bone vibrator. Biphasic positive–negative (p1n1) responses were recorded from both sternocleidomastoid (SCM) muscles using averaged unrectified EMG. The best location for stimulus delivery, optimum stimulus frequency, stimulus thresholds, and the effect of aging on evoked response amplitudes and thresholds were systematically examined. Subjects with specific lesions were studied. Vestibular evoked myogenic potentials (VEMP) to air conducted 0.1 ms clicks, 7 ms/250–2000 Hz tones, and forehead taps were measured for comparison.

Results: Bone conducted sound evoked short latency p1n1 responses in both SCM muscles. Ipsilateral responses occurred earlier and were usually larger. Mean (SD) p1 and n1 latencies were 13.6 (1.8) and 22.3 (1.2) ms ipsilaterally and 14.9 (2.1) and 23.7 (2.7) ms contralaterally. Stimuli of 250 Hz delivered over the mastoid process, posterosuperior to the external acoustic meatus, yielded the largest amplitude responses. Like VEMP in response to air conducted clicks and tones, p1n1 responses were absent ipsilaterally in subjects with selective vestibular neurectomy and preserved in those with severe sensorineural hearing loss. However, p1n1 responses were preserved in conductive hearing loss, whereas VEMP to air conducted sound were abolished or attenuated. Bone conducted response thresholds were 97.5 (3.9) dB SPL/30.5 dB HL, significantly lower than thresholds to air conducted clicks (131.7 (4.9) dB SPL/86.7 dB HL) and tones (114.0 (5.3) dB SPL/106 dB HL).

Conclusions: Bone conducted sound evokes p1n1 responses (bone conducted VEMP) which are a useful measure of vestibular function, especially in the presence of conductive hearing loss. For a given perceptual intensity, bone conducted sound activates the vestibular apparatus more effectively than air conducted sound.

Full Text

The Full Text of this article is available as a PDF (201.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barber P. S., Rose D. E. Bone conduction oscillator placement in testing hearing of selected groups of children. Am J Ment Defic. 1969 Jan;73(4):666–672. [PubMed] [Google Scholar]
  2. Bath A. P., Harris N., McEwan J., Yardley M. P. Effect of conductive hearing loss on the vestibulo-collic reflex. Clin Otolaryngol Allied Sci. 1999 Jun;24(3):181–183. doi: 10.1046/j.1365-2273.1999.00234.x. [DOI] [PubMed] [Google Scholar]
  3. Christensen-Dalsgaard J., Narins P. M. Sound and vibration sensitivity of VIIIth nerve fibers in the frogs Leptodactylus albilabris and Rana pipiens pipiens. J Comp Physiol A. 1993;172(6):653–662. doi: 10.1007/BF00195391. [DOI] [PubMed] [Google Scholar]
  4. Colebatch J. G., Halmagyi G. M., Skuse N. F. Myogenic potentials generated by a click-evoked vestibulocollic reflex. J Neurol Neurosurg Psychiatry. 1994 Feb;57(2):190–197. doi: 10.1136/jnnp.57.2.190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cremer P. D., Halmagyi G. M., Aw S. T., Curthoys I. S., McGarvie L. A., Todd M. J., Black R. A., Hannigan I. P. Semicircular canal plane head impulses detect absent function of individual semicircular canals. Brain. 1998 Apr;121(Pt 4):699–716. doi: 10.1093/brain/121.4.699. [DOI] [PubMed] [Google Scholar]
  6. Fay R. R., Popper A. N. Acoustic stimulation of the ear of the goldfish (Carassius auratus). J Exp Biol. 1974 Aug;61(1):243–260. doi: 10.1242/jeb.61.1.243. [DOI] [PubMed] [Google Scholar]
  7. Halmagyi G. M., Curthoys I. S. Clinical testing of otolith function. Ann N Y Acad Sci. 1999 May 28;871:195–204. doi: 10.1111/j.1749-6632.1999.tb09185.x. [DOI] [PubMed] [Google Scholar]
  8. Halmagyi G. M., Yavor R. A., Colebatch J. G. Tapping the head activates the vestibular system: a new use for the clinical reflex hammer. Neurology. 1995 Oct;45(10):1927–1929. doi: 10.1212/wnl.45.10.1927. [DOI] [PubMed] [Google Scholar]
  9. Hamann K. F., Schuster E. M. Vibration-induced nystagmus - A sign of unilateral vestibular deficit. ORL J Otorhinolaryngol Relat Spec. 1999 Mar-Apr;61(2):74–79. doi: 10.1159/000027645. [DOI] [PubMed] [Google Scholar]
  10. Haughton P. M., Pardoe K. Normal pure tone thresholds for hearing by bone conduction. Br J Audiol. 1981 May;15(2):113–121. doi: 10.3109/03005368109081424. [DOI] [PubMed] [Google Scholar]
  11. Karlberg Mikael, Aw Swee T., Halmagyi G. Michael, Black Ross A. Vibration-induced shift of the subjective visual horizontal: a sign of unilateral vestibular deficit. Arch Otolaryngol Head Neck Surg. 2002 Jan;128(1):21–27. doi: 10.1001/archotol.128.1.21. [DOI] [PubMed] [Google Scholar]
  12. Koyama H., Lewis E. R., Leverenz E. L., Baird R. A. Acute seismic sensitivity in the bullfrog ear. Brain Res. 1982 Oct 28;250(1):168–172. doi: 10.1016/0006-8993(82)90964-7. [DOI] [PubMed] [Google Scholar]
  13. Lackner J. R., Graybiel A. Elicitation of vestibular side effects by regional vibration of the head. Aerosp Med. 1974 Nov;45(11):1267–1272. doi: 10.21236/ad0786288. [DOI] [PubMed] [Google Scholar]
  14. McCue M. P., Guinan J. J., Jr Acoustically responsive fibers in the vestibular nerve of the cat. J Neurosci. 1994 Oct;14(10):6058–6070. doi: 10.1523/JNEUROSCI.14-10-06058.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Minor L. B., Cremer P. D., Carey J. P., Della Santina C. C., Streubel S. O., Weg N. Symptoms and signs in superior canal dehiscence syndrome. Ann N Y Acad Sci. 2001 Oct;942:259–273. doi: 10.1111/j.1749-6632.2001.tb03751.x. [DOI] [PubMed] [Google Scholar]
  16. Murofushi T., Curthoys I. S., Gilchrist D. P. Response of guinea pig vestibular nucleus neurons to clicks. Exp Brain Res. 1996 Sep;111(1):149–152. doi: 10.1007/BF00229565. [DOI] [PubMed] [Google Scholar]
  17. Murofushi T., Curthoys I. S., Topple A. N., Colebatch J. G., Halmagyi G. M. Responses of guinea pig primary vestibular neurons to clicks. Exp Brain Res. 1995;103(1):174–178. doi: 10.1007/BF00241975. [DOI] [PubMed] [Google Scholar]
  18. Murofushi T., Matsuzaki M., Wu C. H. Short tone burst-evoked myogenic potentials on the sternocleidomastoid muscle: are these potentials also of vestibular origin? Arch Otolaryngol Head Neck Surg. 1999 Jun;125(6):660–664. doi: 10.1001/archotol.125.6.660. [DOI] [PubMed] [Google Scholar]
  19. Murofushi Toshihisa, Takegoshi Hideki, Ohki Masafumi, Ozeki Hidenori. Galvanic-evoked myogenic responses in patients with an absence of click-evoked vestibulo-collic reflexes. Clin Neurophysiol. 2002 Feb;113(2):305–309. doi: 10.1016/s1388-2457(01)00738-6. [DOI] [PubMed] [Google Scholar]
  20. Sheykholeslami K., Habiby Kermany M., Kaga K. Frequency sensitivity range of the saccule to bone-conducted stimuli measured by vestibular evoked myogenic potentials. Hear Res. 2001 Oct;160(1-2):58–62. doi: 10.1016/s0378-5955(01)00333-1. [DOI] [PubMed] [Google Scholar]
  21. Sheykholeslami K., Murofushi T., Kermany M. H., Kaga K. Bone-conducted evoked myogenic potentials from the sternocleidomastoid muscle. Acta Otolaryngol. 2000 Sep;120(6):731–734. doi: 10.1080/000164800750000252. [DOI] [PubMed] [Google Scholar]
  22. Sohmer H., Freeman S. The latency of auditory nerve brainstem evoked responses to air- and bone-conducted stimuli. Hear Res. 2001 Oct;160(1-2):111–113. doi: 10.1016/s0378-5955(01)00337-9. [DOI] [PubMed] [Google Scholar]
  23. Tonndorf J. A new concept of bone conduction. Arch Otolaryngol. 1968 Jun;87(6):595–600. doi: 10.1001/archotol.1968.00760060597008. [DOI] [PubMed] [Google Scholar]
  24. Tonndorf J. Bone conduction. Studies in experimental animals. Acta Otolaryngol. 1966;(Suppl):1+–1+. [PubMed] [Google Scholar]
  25. Watson S. R., Colebatch J. G. Vestibulocollic reflexes evoked by short-duration galvanic stimulation in man. J Physiol. 1998 Dec 1;513(Pt 2):587–597. doi: 10.1111/j.1469-7793.1998.587bb.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Watson S. R., Halmagyi G. M., Colebatch J. G. Vestibular hypersensitivity to sound (Tullio phenomenon): structural and functional assessment. Neurology. 2000 Feb 8;54(3):722–728. doi: 10.1212/wnl.54.3.722. [DOI] [PubMed] [Google Scholar]
  27. Weatherton M. A., Goetzinger C. P. A report on bone conduction thresholds at the mastoid and forehead in normals. Audiology. 1971 Jan-Feb;10(1):23–29. doi: 10.3109/00206097109072537. [DOI] [PubMed] [Google Scholar]
  28. Welgampola M. S., Colebatch J. G. Characteristics of tone burst-evoked myogenic potentials in the sternocleidomastoid muscles. Otol Neurotol. 2001 Nov;22(6):796–802. doi: 10.1097/00129492-200111000-00014. [DOI] [PubMed] [Google Scholar]
  29. Welgampola M. S., Colebatch J. G. Vestibulocollic reflexes: normal values and the effect of age. Clin Neurophysiol. 2001 Nov;112(11):1971–1979. doi: 10.1016/s1388-2457(01)00645-9. [DOI] [PubMed] [Google Scholar]
  30. Yang E. Y., Rupert A. L., Moushegian G. A developmental study of bone conduction auditory brain stem response in infants. Ear Hear. 1987 Aug;8(4):244–251. doi: 10.1097/00003446-198708000-00009. [DOI] [PubMed] [Google Scholar]
  31. Young E. D., Fernández C., Goldberg J. M. Responses of squirrel monkey vestibular neurons to audio-frequency sound and head vibration. Acta Otolaryngol. 1977 Nov-Dec;84(5-6):352–360. doi: 10.3109/00016487709123977. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES