Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2003 Jun;74(6):725–727. doi: 10.1136/jnnp.74.6.725

Neuroendocrine changes in patients with acute space occupying ischaemic stroke

S Schwarz 1, S Schwab 1, K Klinga 1, C Maser-Gluth 1, M Bettendorf 1
PMCID: PMC1738514  PMID: 12754339

Abstract

Objective: To evaluate neuroendocrine changes in critical care patients with acute space occupying hemispheric stroke.

Methods: 22 patients with acute space occupying hemispheric stroke were studied (mean age 57.7 years; five women, 17 men). Plasma levels of prolactin, thyrotropin (TSH), total thyroxine (T4), free thyroxine (FT4), and total triiodothyronine (T3) were measured on admission and thereafter on days 3, 5, 7, and 9. Cortisol and ACTH levels were analysed at 8.00, 16.00, and 24.00 hours each day. A TRH stimulation test with measurements of TSH and prolactin was done on day 3.

Results: Nine patients underwent decompressive craniectomy and nine were treated with moderate hypothermia. All patients received vasopressor drugs because of arterial hypotension. Plasma ACTH and cortisol values were abnormally low despite systemic hypotension and acute systemic illness, and remained low throughout the observation period. The diurnal rhythm of cortisol was not preserved. Prolactin levels increased during the observation period, and were well above normal on day 9. Thyroid function was slightly suppressed until day 7. TRH stimulation of plasma TSH and prolactin was low.

Conclusions: Patients with an acute space occupying cerebral infarct show profound neuroendocrine changes. The central regulation of adrenal and thyroid function and prolactin release is impaired, which may compromise the clinical course of affected patients and have implications for therapeutic management.

Full Text

The Full Text of this article is available as a PDF (118.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beaumont A., Marmarou A. The effect of human corticotrophin releasing factor on the formation of post-traumatic cerebral edema. Acta Neurochir Suppl. 1998;71:149–152. doi: 10.1007/978-3-7091-6475-4_44. [DOI] [PubMed] [Google Scholar]
  2. Connolly T. M., Vecsei P. Simple radioimmunoassay of cortisol in diluted samples of human plasma. Clin Chem. 1978 Sep;24(9):1468–1472. [PubMed] [Google Scholar]
  3. Culebras A., Miller M. Dissociated patterns of nocturnal prolactin, cortisol, and growth hormone secretion after stroke. Neurology. 1984 May;34(5):631–636. doi: 10.1212/wnl.34.5.631. [DOI] [PubMed] [Google Scholar]
  4. De Groot L. J. Dangerous dogmas in medicine: the nonthyroidal illness syndrome. J Clin Endocrinol Metab. 1999 Jan;84(1):151–164. doi: 10.1210/jcem.84.1.5364. [DOI] [PubMed] [Google Scholar]
  5. Fassbender K., Schmidt R., Mössner R., Daffertshofer M., Hennerici M. Pattern of activation of the hypothalamic-pituitary-adrenal axis in acute stroke. Relation to acute confusional state, extent of brain damage, and clinical outcome. Stroke. 1994 Jun;25(6):1105–1108. doi: 10.1161/01.str.25.6.1105. [DOI] [PubMed] [Google Scholar]
  6. Feibel J. H., Hardy P. M., Campbell R. G., Goldstein M. N., Joynt R. J. Prognostic value of the stress response following stroke. JAMA. 1977 Sep 26;238(13):1374–1376. [PubMed] [Google Scholar]
  7. Gibbs D. M. Inhibition of corticotropin release during hypothermia: the role of corticotropin-releasing factor, vasopressin, and oxytocin. Endocrinology. 1985 Feb;116(2):723–727. doi: 10.1210/endo-116-2-723. [DOI] [PubMed] [Google Scholar]
  8. Johansson A., Ahrén B., Näsman B., Carlström K., Olsson T. Cortisol axis abnormalities early after stroke--relationships to cytokines and leptin. J Intern Med. 2000 Feb;247(2):179–187. doi: 10.1046/j.1365-2796.2000.00600.x. [DOI] [PubMed] [Google Scholar]
  9. Jurney T. H., Cockrell J. L., Jr, Lindberg J. S., Lamiell J. M., Wade C. E. Spectrum of serum cortisol response to ACTH in ICU patients. Correlation with degree of illness and mortality. Chest. 1987 Aug;92(2):292–295. doi: 10.1378/chest.92.2.292. [DOI] [PubMed] [Google Scholar]
  10. Kertész A., Godó G., Falkay G., Boros M. Plasma cortisol, prolactin and thyroxine levels related to midazolam anaesthesia. Acta Med Hung. 1986;43(3):283–289. [PubMed] [Google Scholar]
  11. Kochs E., Schulte am Esch J. Hormone des Hypophysen-Nebennierenrindensystems bei Patienten unter Langzeitsedierung mit Etomidat und Fentanyl. Anaesthesist. 1984 Sep;33(9):402–407. [PubMed] [Google Scholar]
  12. Mulley G. P., Wilcox R. G., Harrison M. J. Plasma cortisol as a measure of stress response in acute stroke. Stroke. 1989 Nov;20(11):1593–1593. doi: 10.1161/01.str.20.11.1593. [DOI] [PubMed] [Google Scholar]
  13. Murros K., Fogelholm R., Kettunen S., Vuorela A. L. Serum cortisol and outcome of ischemic brain infarction. J Neurol Sci. 1993 May;116(1):12–17. doi: 10.1016/0022-510x(93)90083-b. [DOI] [PubMed] [Google Scholar]
  14. Nilsson A. Autonomic and hormonal responses after the use of midazolam and flumazenil. Acta Anaesthesiol Scand Suppl. 1990;92:51–78. doi: 10.1111/j.1399-6576.1990.tb03184.x. [DOI] [PubMed] [Google Scholar]
  15. OKA M. Effect of cerebral vascular accident on the level of 17-hydroxycorticosteroids in plasma. Acta Med Scand. 1956 Dec 22;156(3):221–226. doi: 10.1111/j.0954-6820.1956.tb00079.x. [DOI] [PubMed] [Google Scholar]
  16. Olsson T., Asplund K., Hägg E. Pituitary-thyroid axis, prolactin and growth hormone in patients with acute stroke. J Intern Med. 1990 Sep;228(3):287–290. doi: 10.1111/j.1365-2796.1990.tb00233.x. [DOI] [PubMed] [Google Scholar]
  17. Olsson T., Marklund N., Gustafson Y., Näsman B. Abnormalities at different levels of the hypothalamic-pituitary-adrenocortical axis early after stroke. Stroke. 1992 Nov;23(11):1573–1576. doi: 10.1161/01.str.23.11.1573. [DOI] [PubMed] [Google Scholar]
  18. Schwab S., Schwarz S., Spranger M., Keller E., Bertram M., Hacke W. Moderate hypothermia in the treatment of patients with severe middle cerebral artery infarction. Stroke. 1998 Dec;29(12):2461–2466. doi: 10.1161/01.str.29.12.2461. [DOI] [PubMed] [Google Scholar]
  19. Schwab S., Steiner T., Aschoff A., Schwarz S., Steiner H. H., Jansen O., Hacke W. Early hemicraniectomy in patients with complete middle cerebral artery infarction. Stroke. 1998 Sep;29(9):1888–1893. doi: 10.1161/01.str.29.9.1888. [DOI] [PubMed] [Google Scholar]
  20. Sebel P. S., Bovill J. G., Schellekens A. P., Hawker C. D. Hormonal responses to high-dose fentanyl anaesthesia. A study in patients undergoing cardiac surgery. Br J Anaesth. 1981 Sep;53(9):941–948. doi: 10.1093/bja/53.9.941. [DOI] [PubMed] [Google Scholar]
  21. Slowik Agnieszka, Turaj Wojciech, Pankiewicz Joanna, Dziedzic Tomasz, Szermer Paweł, Szczudlik Andrzej. Hypercortisolemia in acute stroke is related to the inflammatory response. J Neurol Sci. 2002 Apr 15;196(1-2):27–32. doi: 10.1016/s0022-510x(02)00018-7. [DOI] [PubMed] [Google Scholar]
  22. Spijkstra J. J., Thijs L. G. Adrenal dysfunction in critical illness: a clinical entity that requires treatment? Curr Opin Anaesthesiol. 2000 Apr;13(2):99–103. doi: 10.1097/00001503-200004000-00003. [DOI] [PubMed] [Google Scholar]
  23. Van den Berghe G., de Zegher F., Bouillon R. Clinical review 95: Acute and prolonged critical illness as different neuroendocrine paradigms. J Clin Endocrinol Metab. 1998 Jun;83(6):1827–1834. doi: 10.1210/jcem.83.6.4763. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES