Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2003 Aug;74(8):1117–1121. doi: 10.1136/jnnp.74.8.1117

Predictors of successful self control during brain-computer communication

N Neumann 1, N Birbaumer 1
PMCID: PMC1738580  PMID: 12876247

Abstract

Objectives: Direct brain-computer communication uses self regulation of brain potentials to select letters, words, or symbols from a computer menu to re-establish communication in severely paralysed patients. However, not all healthy subjects, or all paralysed patients acquire the skill to self regulate their brain potentials, and predictors of successful learning have not been found yet. Predictors are particularly important, because only successful self regulation will in the end lead to efficient brain-computer communication. This study investigates the question whether initial performance in the self regulation of slow cortical potentials of the brain (SCPs) may be positively correlated to later performance and could thus be used as a predictor.

Methods: Five severely paralysed patients diagnosed with amyotrophic lateral sclerosis were trained to produce SCP amplitudes of negative and positive polarity by means of visual feedback and operant conditioning strategies. Performance was measured as percentage of correct SCP amplitude shifts. To determine the relation between initial and later performance in SCP self regulation, Spearman's rank correlations were calculated between maximum and mean performance at the beginning of training (runs 1–30) and mean performance at two later time points (runs 64–93 and 162–191).

Results: Spearman's rank correlations revealed a significant relation between maximum and mean performance in runs 1–30 and mean performance in runs 64–93 (r= 0.9 and 1.0) and maximum and mean performance in runs 1–30 and mean performance in runs 162–191 (r=1.0 and 1.0).

Conclusions: Initial performance in the self regulation of SCP is positively correlated with later performance in severely paralysed patients, and thus represents a useful predictor for efficient brain-computer communication.

Full Text

The Full Text of this article is available as a PDF (154.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahams S., Leigh P. N., Harvey A., Vythelingum G. N., Grisé D., Goldstein L. H. Verbal fluency and executive dysfunction in amyotrophic lateral sclerosis (ALS). Neuropsychologia. 2000;38(6):734–747. doi: 10.1016/s0028-3932(99)00146-3. [DOI] [PubMed] [Google Scholar]
  2. Bach J. R. Amyotrophic lateral sclerosis. Communication status and survival with ventilatory support. Am J Phys Med Rehabil. 1993 Dec;72(6):343–349. [PubMed] [Google Scholar]
  3. Birbaumer N., Elbert T., Canavan A. G., Rockstroh B. Slow potentials of the cerebral cortex and behavior. Physiol Rev. 1990 Jan;70(1):1–41. doi: 10.1152/physrev.1990.70.1.1. [DOI] [PubMed] [Google Scholar]
  4. Birbaumer N., Elbert T., Lutzenberger W., Rockstroh B., Schwarz J. EEG and slow cortical potentials in anticipation of mental tasks with different hemispheric involvement. Biol Psychol. 1981 Dec;13:251–260. doi: 10.1016/0301-0511(81)90040-5. [DOI] [PubMed] [Google Scholar]
  5. Birbaumer N., Ghanayim N., Hinterberger T., Iversen I., Kotchoubey B., Kübler A., Perelmouter J., Taub E., Flor H. A spelling device for the paralysed. Nature. 1999 Mar 25;398(6725):297–298. doi: 10.1038/18581. [DOI] [PubMed] [Google Scholar]
  6. Birbaumer N., Lang P. J., Cook E., 3rd, Elbert T., Lutzenberger W., Rockstroh B. Slow brain potentials, imagery and hemispheric differences. Int J Neurosci. 1988 Mar;39(1-2):101–116. doi: 10.3109/00207458808985696. [DOI] [PubMed] [Google Scholar]
  7. Daum I., Rockstroh B., Birbaumer N., Elbert T., Canavan A., Lutzenberger W. Behavioural treatment of slow cortical potentials in intractable epilepsy: neuropsychological predictors of outcome. J Neurol Neurosurg Psychiatry. 1993 Jan;56(1):94–97. doi: 10.1136/jnnp.56.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Elbert T., Rockstroh B., Lutzenberger W., Birbaumer N. Biofeedback of slow cortical potentials. I. Electroencephalogr Clin Neurophysiol. 1980 Mar;48(3):293–301. doi: 10.1016/0013-4694(80)90265-5. [DOI] [PubMed] [Google Scholar]
  9. Gratton G., Coles M. G., Donchin E. A new method for off-line removal of ocular artifact. Electroencephalogr Clin Neurophysiol. 1983 Apr;55(4):468–484. doi: 10.1016/0013-4694(83)90135-9. [DOI] [PubMed] [Google Scholar]
  10. Hanagasi Hasmet A., Gurvit I. Hakan, Ermutlu Numan, Kaptanoglu Gulustu, Karamursel Sacit, Idrisoglu Halil A., Emre Murat, Demiralp Tamer. Cognitive impairment in amyotrophic lateral sclerosis: evidence from neuropsychological investigation and event-related potentials. Brain Res Cogn Brain Res. 2002 Aug;14(2):234–244. doi: 10.1016/s0926-6410(02)00110-6. [DOI] [PubMed] [Google Scholar]
  11. Hardman E., Gruzelier J., Cheesman K., Jones C., Liddiard D., Schleichert H., Birbaumer N. Frontal interhemispheric asymmetry: self regulation and individual differences in humans. Neurosci Lett. 1997 Jan 17;221(2-3):117–120. doi: 10.1016/s0304-3940(96)13303-6. [DOI] [PubMed] [Google Scholar]
  12. Hudson A. J. Amyotrophic lateral sclerosis and its association with dementia, parkinsonism and other neurological disorders: a review. Brain. 1981 Jun;104(2):217–247. doi: 10.1093/brain/104.2.217. [DOI] [PubMed] [Google Scholar]
  13. KORNHUBER H. H., DEECKE L. HIRNPOTENTIALAENDERUNGEN BEI WILLKUERBEWEGUNGEN UND PASSIVEN BEWEGUNGEN DES MENSCHEN: BEREITSCHAFTSPOTENTIAL UND REAFFERENTE POTENTIALE. Pflugers Arch Gesamte Physiol Menschen Tiere. 1965 May 10;284:1–17. [PubMed] [Google Scholar]
  14. Kennedy P. R., Bakay R. A., Moore M. M., Adams K., Goldwaithe J. Direct control of a computer from the human central nervous system. IEEE Trans Rehabil Eng. 2000 Jun;8(2):198–202. doi: 10.1109/86.847815. [DOI] [PubMed] [Google Scholar]
  15. Kew J. J., Leigh P. N., Playford E. D., Passingham R. E., Goldstein L. H., Frackowiak R. S., Brooks D. J. Cortical function in amyotrophic lateral sclerosis. A positron emission tomography study. Brain. 1993 Jun;116(Pt 3):655–680. doi: 10.1093/brain/116.3.655. [DOI] [PubMed] [Google Scholar]
  16. Kübler A., Kotchoubey B., Hinterberger T., Ghanayim N., Perelmouter J., Schauer M., Fritsch C., Taub E., Birbaumer N. The thought translation device: a neurophysiological approach to communication in total motor paralysis. Exp Brain Res. 1999 Jan;124(2):223–232. doi: 10.1007/s002210050617. [DOI] [PubMed] [Google Scholar]
  17. Kübler A., Kotchoubey B., Kaiser J., Wolpaw J. R., Birbaumer N. Brain-computer communication: unlocking the locked in. Psychol Bull. 2001 May;127(3):358–375. doi: 10.1037/0033-2909.127.3.358. [DOI] [PubMed] [Google Scholar]
  18. Kübler A., Neumann N., Kaiser J., Kotchoubey B., Hinterberger T., Birbaumer N. P. Brain-computer communication: self-regulation of slow cortical potentials for verbal communication. Arch Phys Med Rehabil. 2001 Nov;82(11):1533–1539. doi: 10.1053/apmr.2001.26621. [DOI] [PubMed] [Google Scholar]
  19. Ludolph A. C., Langen K. J., Regard M., Herzog H., Kemper B., Kuwert T., Böttger I. G., Feinendegen L. Frontal lobe function in amyotrophic lateral sclerosis: a neuropsychologic and positron emission tomography study. Acta Neurol Scand. 1992 Feb;85(2):81–89. doi: 10.1111/j.1600-0404.1992.tb04003.x. [DOI] [PubMed] [Google Scholar]
  20. Neumann Nicola, Kübler Andrea, Kaiser Jochen, Hinterberger Thilo, Birbaumer Niels. Conscious perception of brain states: mental strategies for brain-computer communication. Neuropsychologia. 2003;41(8):1028–1036. doi: 10.1016/s0028-3932(02)00298-1. [DOI] [PubMed] [Google Scholar]
  21. Perelmouter J., Birbaumer N. A binary spelling interface with random errors. IEEE Trans Rehabil Eng. 2000 Jun;8(2):227–232. doi: 10.1109/86.847824. [DOI] [PubMed] [Google Scholar]
  22. Pfurtscheller G., Flotzinger D., Pregenzer M., Wolpaw J. R., McFarland D. EEG-based brain computer interface (BCI). Search for optimal electrode positions and frequency components. Med Prog Technol. 1995;21(3):111–121. [PubMed] [Google Scholar]
  23. Rockstroh B., Elbert T., Birbaumer N., Lutzenberger W. Biofeedback-produced hemispheric asymmetry of slow cortical potentials and its behavioural effects. Int J Psychophysiol. 1990 Sep;9(2):151–165. doi: 10.1016/0167-8760(90)90069-p. [DOI] [PubMed] [Google Scholar]
  24. Rockstroh B., Elbert T., Birbaumer N., Wolf P., Düchting-Röth A., Reker M., Daum I., Lutzenberger W., Dichgans J. Cortical self-regulation in patients with epilepsies. Epilepsy Res. 1993 Jan;14(1):63–72. doi: 10.1016/0920-1211(93)90075-i. [DOI] [PubMed] [Google Scholar]
  25. Strong M. J., Grace G. M., Orange J. B., Leeper H. A. Cognition, language, and speech in amyotrophic lateral sclerosis: a review. J Clin Exp Neuropsychol. 1996 Apr;18(2):291–303. doi: 10.1080/01688639608408283. [DOI] [PubMed] [Google Scholar]
  26. Strong M. J., Grace G. M., Orange J. B., Leeper H. A., Menon R. S., Aere C. A prospective study of cognitive impairment in ALS. Neurology. 1999 Nov 10;53(8):1665–1670. doi: 10.1212/wnl.53.8.1665. [DOI] [PubMed] [Google Scholar]
  27. WALTER W. G., COOPER R., ALDRIDGE V. J., MCCALLUM W. C., WINTER A. L. CONTINGENT NEGATIVE VARIATION: AN ELECTRIC SIGN OF SENSORIMOTOR ASSOCIATION AND EXPECTANCY IN THE HUMAN BRAIN. Nature. 1964 Jul 25;203:380–384. doi: 10.1038/203380a0. [DOI] [PubMed] [Google Scholar]
  28. Wolpaw J. R., McFarland D. J., Vaughan T. M. Brain-computer interface research at the Wadsworth Center. IEEE Trans Rehabil Eng. 2000 Jun;8(2):222–226. doi: 10.1109/86.847823. [DOI] [PubMed] [Google Scholar]
  29. Wolpaw Jonathan R., Birbaumer Niels, McFarland Dennis J., Pfurtscheller Gert, Vaughan Theresa M. Brain-computer interfaces for communication and control. Clin Neurophysiol. 2002 Jun;113(6):767–791. doi: 10.1016/s1388-2457(02)00057-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES