Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Mar;64(3):933–937. doi: 10.1128/iai.64.3.933-937.1996

Analysis of the specificity of bacterial immunoglobulin A (IgA) proteases by a comparative study of ape serum IgAs as substrates.

J Qiu 1, G P Brackee 1, A G Plaut 1
PMCID: PMC173859  PMID: 8641803

Abstract

Immunoglobulin A (IgA) proteases are bacterial enzymes with substrate specificity for human serum and secretory IgAs. To further define the basis of this specificity, we examined the ability of IgA proteases of Clostridium ramosum, Streptococcus pneumoniae (EC 3.4.24.13), Neisseria meningitidis (EC 3.4.21.72), and Haemophilus influenzae (EC 3.4.21.72) to cleave serum IgAs of gorillas, chimpanzees, and orangutans. All enzymes cleaved the IgAs of the three apes despite differences in ape IgA1 hinge sequence relative to the human prototype. To directly compare the ape and human hinge cleavage sites, the sites were identified in eight ape IgA digests. This analysis confirmed that ape proteins were all cleaved in the IgA hinge region, in all but one case after proline residues. The exception, C. ramosum protease, cleaved gorilla and chimpanzee IgAs at peptide bonds having no proline, but the scissile bonds were in the same hinge location as the Pro-221-Val-222 cleaved in human IgA1. These data indicate that proline is not an invariant substrate requirement for all IgA proteases and that the location of the scissile bond, in addition to its composition, is a critical determinant of cleavage specificity.

Full Text

The Full Text of this article is available as a PDF (271.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Binscheck T., Bartels F., Bergel H., Bigalke H., Yamasaki S., Hayashi T., Niemann H., Pohlner J. IgA protease from Neisseria gonorrhoeae inhibits exocytosis in bovine chromaffin cells like tetanus toxin. J Biol Chem. 1995 Jan 27;270(4):1770–1774. doi: 10.1074/jbc.270.4.1770. [DOI] [PubMed] [Google Scholar]
  2. Bricker J., Mulks M., Moxon E. R., Plaut A. G., Wright A. Physical and genetic analysis of DNA regions encoding the immunoglobulin A proteases of different specificities produced by Haemophilus influenzae. Infect Immun. 1985 Feb;47(2):370–374. doi: 10.1128/iai.47.2.370-374.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brooks G. F., Lammel C. J., Blake M. S., Kusecek B., Achtman M. Antibodies against IgA1 protease are stimulated both by clinical disease and asymptomatic carriage of serogroup A Neisseria meningitidis. J Infect Dis. 1992 Dec;166(6):1316–1321. doi: 10.1093/infdis/166.6.1316. [DOI] [PubMed] [Google Scholar]
  4. Cole M. F., Hale C. A. Cleavage of chimpanzee secretory immunoglobulin A by Haemophilus influenzae IgA1 protease. Microb Pathog. 1991 Jul;11(1):39–46. doi: 10.1016/0882-4010(91)90092-o. [DOI] [PubMed] [Google Scholar]
  5. Devenyi A. G., Plaut A. G., Grundy F. J., Wright A. Post-infectious human serum antibodies inhibit IgA1 proteinases by interaction with the cleavage site specificity determinant. Mol Immunol. 1993 Oct;30(14):1243–1248. doi: 10.1016/0161-5890(93)90039-e. [DOI] [PubMed] [Google Scholar]
  6. Fujiyama Y., Iwaki M., Hodohara K., Hosoda S., Kobayashi K. The site of cleavage in human alpha chains of IgA1 and IgA2:A2m(1) allotype paraproteins by the clostridial IGA protease. Mol Immunol. 1986 Feb;23(2):147–150. doi: 10.1016/0161-5890(86)90036-2. [DOI] [PubMed] [Google Scholar]
  7. Fujiyama Y., Kobayashi K., Senda S., Benno Y., Bamba T., Hosoda S. A novel IgA protease from Clostridium sp. capable of cleaving IgA1 and IgA2 A2m(1) but not IgA2 A2m(2) allotype paraproteins. J Immunol. 1985 Jan;134(1):573–576. [PubMed] [Google Scholar]
  8. Gershoni J. M., Palade G. E. Protein blotting: principles and applications. Anal Biochem. 1983 May;131(1):1–15. doi: 10.1016/0003-2697(83)90128-8. [DOI] [PubMed] [Google Scholar]
  9. Grundy F. J., Plaut A. G., Wright A. Localization of the cleavage site specificity determinant of Haemophilus influenzae immunoglobulin A1 protease genes. Infect Immun. 1990 Feb;58(2):320–331. doi: 10.1128/iai.58.2.320-331.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kawamura S., Omoto K., Ueda S. Evolutionary hypervariability in the hinge region of the immunoglobulin alpha gene. J Mol Biol. 1990 Sep 20;215(2):201–206. doi: 10.1016/S0022-2836(05)80336-5. [DOI] [PubMed] [Google Scholar]
  11. Kawamura S., Saitou N., Ueda S. Concerted evolution of the primate immunoglobulin alpha-gene through gene conversion. J Biol Chem. 1992 Apr 15;267(11):7359–7367. [PubMed] [Google Scholar]
  12. Kilian M., Mestecky J., Kulhavy R., Tomana M., Butler W. T. IgA1 proteases from Haemophilus influenzae, Streptococcus pneumoniae, Neisseria meningitidis, and Streptococcus sanguis: comparative immunochemical studies. J Immunol. 1980 Jun;124(6):2596–2600. [PubMed] [Google Scholar]
  13. Kilian M., Mestecky J., Schrohenloher R. E. Pathogenic species of the genus Haemophilus and Streptococcus pneumoniae produce immunoglobulin A1 protease. Infect Immun. 1979 Oct;26(1):143–149. doi: 10.1128/iai.26.1.143-149.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kilian M., Reinholdt J. A hypothetical model for the development of invasive infection due to IgA1 protease-producing bacteria. Adv Exp Med Biol. 1987;216B:1261–1269. [PubMed] [Google Scholar]
  15. Kornfeld S. J., Plaut A. G. Secretory immunity and the bacterial IgA proteases. Rev Infect Dis. 1981 May-Jun;3(3):521–534. doi: 10.1093/clinids/3.3.521. [DOI] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. LeGendre N., Matsudaira P. Direct protein microsequencing from Immobilon-P Transfer Membrane. Biotechniques. 1988 Feb;6(2):154–159. [PubMed] [Google Scholar]
  18. Liu Y. S., Low T. L., Infante A., Putnam F. W. Complete covalent structure of a human IgA1 immunoglobulin. Science. 1976 Sep 10;193(4257):1017–1020. doi: 10.1126/science.821146. [DOI] [PubMed] [Google Scholar]
  19. Lomholt H., Poulsen K., Kilian M. Comparative characterization of the iga gene encoding IgA1 protease in Neisseria meningitidis, Neisseria gonorrhoeae and Haemophilus influenzae. Mol Microbiol. 1995 Feb;15(3):495–506. doi: 10.1111/j.1365-2958.1995.tb02263.x. [DOI] [PubMed] [Google Scholar]
  20. Male C. J. Immunoglobulin A1 protease production by Haemophilus influenzae and Streptococcus pneumoniae. Infect Immun. 1979 Oct;26(1):254–261. doi: 10.1128/iai.26.1.254-261.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mulks M. H., Shoberg R. J. Bacterial immunoglobulin A1 proteases. Methods Enzymol. 1994;235:543–554. doi: 10.1016/0076-6879(94)35169-4. [DOI] [PubMed] [Google Scholar]
  22. Plaut A. G., Bachovchin W. W. IgA-specific prolyl endopeptidases: serine type. Methods Enzymol. 1994;244:137–151. doi: 10.1016/0076-6879(94)44012-3. [DOI] [PubMed] [Google Scholar]
  23. Plaut A. G., Wistar R., Jr, Capra J. D. Differential susceptibility of human IgA immunoglobulins to streptococcal IgA protease. J Clin Invest. 1974 Dec;54(6):1295–1300. doi: 10.1172/JCI107875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Plaut A. G., Wright A. Immunoglobulin A-metallo-type specific prolyl endopeptidases. Methods Enzymol. 1995;248:634–642. doi: 10.1016/0076-6879(95)48040-4. [DOI] [PubMed] [Google Scholar]
  25. Proctor M., Manning P. J. Production of immunoglobulin A protease by Streptococcus pneumoniae from animals. Infect Immun. 1990 Sep;58(9):2733–2737. doi: 10.1128/iai.58.9.2733-2737.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Reinholdt J., Kilian M. Lack of cleavage of immunoglobulin A (IgA) from rhesus monkeys by bacterial IgA1 proteases. Infect Immun. 1991 Jun;59(6):2219–2221. doi: 10.1128/iai.59.6.2219-2221.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shone C. C., Quinn C. P., Wait R., Hallis B., Fooks S. G., Hambleton P. Proteolytic cleavage of synthetic fragments of vesicle-associated membrane protein, isoform-2 by botulinum type B neurotoxin. Eur J Biochem. 1993 Nov 1;217(3):965–971. doi: 10.1111/j.1432-1033.1993.tb18327.x. [DOI] [PubMed] [Google Scholar]
  28. Toraño A., Putnam F. W. Complete amino acid sequence of the alpha 2 heavy chain of a human IgA2 immunoglobulin of the A2m (2) allotype. Proc Natl Acad Sci U S A. 1978 Feb;75(2):966–969. doi: 10.1073/pnas.75.2.966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tsuzukida Y., Wang C. C., Putnam F. W. Structure of the A2m(1) allotype of human IgA--a recombinant molecule. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1104–1108. doi: 10.1073/pnas.76.3.1104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yamasaki S., Baumeister A., Binz T., Blasi J., Link E., Cornille F., Roques B., Fykse E. M., Südhof T. C., Jahn R. Cleavage of members of the synaptobrevin/VAMP family by types D and F botulinal neurotoxins and tetanus toxin. J Biol Chem. 1994 Apr 29;269(17):12764–12772. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES