Abstract
Background: It has been suggested that a moving correlation index between mean arterial blood pressure and intracranial pressure, called PRx, can be used to monitor and quantify cerebral vasomotor reactivity in patients with head injury.
Objectives: To validate this index and study its relation with cerebral blood flow velocity and cerebral autoregulation; and to identify variables associated with impairment or preservation of cerebral vasomotor reactivity.
Methods: The PRx was validated in a prospective study of 40 head injured patients. A PRx value of less than 0.3 indicates intact cerebral vasomotor reactivity, and a value of more than 0.3, impaired reactivity. Arterial blood pressure, intracranial pressure, mean cerebral perfusion pressure, and cerebral blood flow velocity, measured bilaterally with transcranial Doppler ultrasound, were recorded. Dynamic cerebrovascular autoregulation was measured using a moving correlation coefficient between arterial blood pressure and cerebral blood flow velocity, the Mx, for each cerebral hemisphere. All variables were compared in patients with intact and impaired cerebral vasomotor reactivity.
Results: No correlation between arterial blood pressure or cerebral perfusion pressure and cerebral blood flow velocity was seen in 19 patients with intact cerebral vasomotor reactivity. In contrast, the correlation between these variables was significant in 21 patients with impaired cerebral vasomotor reactivity, whose cerebral autoregulation was reduced. There was no correlation with intracranial pressure, arterial blood pressure, cerebral perfusion pressure, or interhemispheric cerebral autoregulation differences, but the values for these indices were largely within normal limits.
Conclusions: The PRx is valid for monitoring and quantifying cerebral vasomotor reactivity in patients with head injury. This intracranial pressure based index reflects changes in cerebral blood flow and cerebral autoregulatory capacity, suggesting a close link between blood flow and intracranial pressure in head injured patients. This explains why increases in arterial blood pressure and cerebral perfusion pressure may be useful for reducing intracranial pressure in selected head injured patients (those with intact cerebral vasomotor reactivity).
Full Text
The Full Text of this article is available as a PDF (266.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Carey B. J., Eames P. J., Blake M. J., Panerai R. B., Potter J. F. Dynamic cerebral autoregulation is unaffected by aging. Stroke. 2000 Dec;31(12):2895–2900. doi: 10.1161/01.str.31.12.2895. [DOI] [PubMed] [Google Scholar]
- Chan K. H., Miller J. D., Dearden N. M., Andrews P. J., Midgley S. The effect of changes in cerebral perfusion pressure upon middle cerebral artery blood flow velocity and jugular bulb venous oxygen saturation after severe brain injury. J Neurosurg. 1992 Jul;77(1):55–61. doi: 10.3171/jns.1992.77.1.0055. [DOI] [PubMed] [Google Scholar]
- Czosnyka M., Guazzo E., Iyer V., Kirkpatrick P., Smielewski P., Whitehouse H., Pickard J. D. Testing of cerebral autoregulation in head injury by waveform analysis of blood flow velocity and cerebral perfusion pressure. Acta Neurochir Suppl (Wien) 1994;60:468–471. doi: 10.1007/978-3-7091-9334-1_128. [DOI] [PubMed] [Google Scholar]
- Czosnyka M., Smielewski P., Kirkpatrick P., Laing R. J., Menon D., Pickard J. D. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997 Jul;41(1):11–19. doi: 10.1097/00006123-199707000-00005. [DOI] [PubMed] [Google Scholar]
- Czosnyka M., Smielewski P., Kirkpatrick P., Menon D. K., Pickard J. D. Monitoring of cerebral autoregulation in head-injured patients. Stroke. 1996 Oct;27(10):1829–1834. doi: 10.1161/01.str.27.10.1829. [DOI] [PubMed] [Google Scholar]
- Czosnyka M., Smielewski P., Kirkpatrick P., Piechnik S., Laing R., Pickard J. D. Continuous monitoring of cerebrovascular pressure-reactivity in head injury. Acta Neurochir Suppl. 1998;71:74–77. doi: 10.1007/978-3-7091-6475-4_23. [DOI] [PubMed] [Google Scholar]
- Czosnyka M., Smielewski P., Piechnik S., Steiner L. A., Pickard J. D. Cerebral autoregulation following head injury. J Neurosurg. 2001 Nov;95(5):756–763. doi: 10.3171/jns.2001.95.5.0756. [DOI] [PubMed] [Google Scholar]
- Daffertshofer M., Diehl R. R., Ziems G. U., Hennerici M. Orthostatic changes of cerebral blood flow velocity in patients with autonomic dysfunction. J Neurol Sci. 1991 Jul;104(1):32–38. doi: 10.1016/0022-510x(91)90212-p. [DOI] [PubMed] [Google Scholar]
- Dawson S. L., Blake M. J., Panerai R. B., Potter J. F. Dynamic but not static cerebral autoregulation is impaired in acute ischaemic stroke. Cerebrovasc Dis. 2000 Mar-Apr;10(2):126–132. doi: 10.1159/000016041. [DOI] [PubMed] [Google Scholar]
- Diehl R. R., Linden D., Lücke D., Berlit P. Phase relationship between cerebral blood flow velocity and blood pressure. A clinical test of autoregulation. Stroke. 1995 Oct;26(10):1801–1804. doi: 10.1161/01.str.26.10.1801. [DOI] [PubMed] [Google Scholar]
- Giller C. A. A bedside test for cerebral autoregulation using transcranial Doppler ultrasound. Acta Neurochir (Wien) 1991;108(1-2):7–14. doi: 10.1007/BF01407660. [DOI] [PubMed] [Google Scholar]
- Lang E. W., Chesnut R. M. A bedside method for investigating the integrity and critical thresholds of cerebral pressure autoregulation in severe traumatic brain injury patients. Br J Neurosurg. 2000 Apr;14(2):117–126. doi: 10.1080/02688690050004534. [DOI] [PubMed] [Google Scholar]
- Lang E. W., Chesnut R. M. Intracranial pressure. Monitoring and management. Neurosurg Clin N Am. 1994 Oct;5(4):573–605. [PubMed] [Google Scholar]
- Lang E. W., Mehdorn H. M., Dorsch N. W. C., Czosnyka M. Continuous monitoring of cerebrovascular autoregulation: a validation study. J Neurol Neurosurg Psychiatry. 2002 May;72(5):583–586. doi: 10.1136/jnnp.72.5.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lang Erhard W., Czosnyka Marek, Mehdorn H. Maximilian. Tissue oxygen reactivity and cerebral autoregulation after severe traumatic brain injury. Crit Care Med. 2003 Jan;31(1):267–271. doi: 10.1097/00003246-200301000-00042. [DOI] [PubMed] [Google Scholar]
- Larsen F. S., Olsen K. S., Hansen B. A., Paulson O. B., Knudsen G. M. Transcranial Doppler is valid for determination of the lower limit of cerebral blood flow autoregulation. Stroke. 1994 Oct;25(10):1985–1988. doi: 10.1161/01.str.25.10.1985. [DOI] [PubMed] [Google Scholar]
- Lewis S. B., Wong M. L., Bannan P. E., Piper I. R., Reilly P. L. Transcranial Doppler identification of changing autoregulatory thresholds after autoregulatory impairment. Neurosurgery. 2001 Feb;48(2):369–376. [PubMed] [Google Scholar]
- MacKenzie E. T., Farrar J. K., Fitch W., Graham D. I., Gregory P. C., Harper A. M. Effects of hemorrhagic hypotension on the cerebral circulation. I. Cerebral blood flow and pial arteriolar caliber. Stroke. 1979 Nov-Dec;10(6):711–718. doi: 10.1161/01.str.10.6.711. [DOI] [PubMed] [Google Scholar]
- Martin N. A., Patwardhan R. V., Alexander M. J., Africk C. Z., Lee J. H., Shalmon E., Hovda D. A., Becker D. P. Characterization of cerebral hemodynamic phases following severe head trauma: hypoperfusion, hyperemia, and vasospasm. J Neurosurg. 1997 Jul;87(1):9–19. doi: 10.3171/jns.1997.87.1.0009. [DOI] [PubMed] [Google Scholar]
- Oertel Matthias, Kelly Daniel F., Lee Jae Hong, McArthur David L., Glenn Thomas C., Vespa Paul, Boscardin W. John, Hovda David A., Martin Neil A. Efficacy of hyperventilation, blood pressure elevation, and metabolic suppression therapy in controlling intracranial pressure after head injury. J Neurosurg. 2002 Nov;97(5):1045–1053. doi: 10.3171/jns.2002.97.5.1045. [DOI] [PubMed] [Google Scholar]
- Piechnik S. K., Yang X., Czosnyka M., Smielewski P., Fletcher S. H., Jones A. L., Pickard J. D. The continuous assessment of cerebrovascular reactivity: a validation of the method in healthy volunteers. Anesth Analg. 1999 Oct;89(4):944–949. doi: 10.1097/00000539-199910000-00023. [DOI] [PubMed] [Google Scholar]
- Schmidt E. A., Czosnyka M., Smielewski P., Piechnik S. K., Pickard J. D. Asymmetry of cerebral autoregulation following head injury. Acta Neurochir Suppl. 2002;81:133–134. doi: 10.1007/978-3-7091-6738-0_34. [DOI] [PubMed] [Google Scholar]
- Steiner Luzius A., Czosnyka Marek, Piechnik Stefan K., Smielewski Piotr, Chatfield Doris, Menon David K., Pickard John D. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002 Apr;30(4):733–738. doi: 10.1097/00003246-200204000-00002. [DOI] [PubMed] [Google Scholar]
- Steinmeier Ralf, Bauhuf Christian, Hübner Ulrich, Hofmann Robby P., Fahlbusch Rudolf. Continuous cerebral autoregulation monitoring by cross-correlation analysis: evaluation in healthy volunteers. Crit Care Med. 2002 Sep;30(9):1969–1975. doi: 10.1097/00003246-200209000-00004. [DOI] [PubMed] [Google Scholar]
- Takeuchi H., Handa Y., Kobayashi H., Kawano H., Hayashi M. Impairment of cerebral autoregulation during the development of chronic cerebral vasospasm after subarachnoid hemorrhage in primates. Neurosurgery. 1991 Jan;28(1):41–48. doi: 10.1097/00006123-199101000-00007. [DOI] [PubMed] [Google Scholar]
- Vavilala M. S., Newell D. W., Junger E., Douville C. M., Aaslid R., Rivara F. P., Lam A. M. Dynamic cerebral autoregulation in healthy adolescents. Acta Anaesthesiol Scand. 2002 Apr;46(4):393–397. doi: 10.1034/j.1399-6576.2002.460411.x. [DOI] [PubMed] [Google Scholar]
- Wallis S. J., Firth J., Dunn W. R. Pressure-induced myogenic responses in human isolated cerebral resistance arteries. Stroke. 1996 Dec;27(12):2287–2291. doi: 10.1161/01.str.27.12.2287. [DOI] [PubMed] [Google Scholar]
- Yundt K. D., Grubb R. L., Jr, Diringer M. N., Powers W. J. Autoregulatory vasodilation of parenchymal vessels is impaired during cerebral vasospasm. J Cereb Blood Flow Metab. 1998 Apr;18(4):419–424. doi: 10.1097/00004647-199804000-00010. [DOI] [PubMed] [Google Scholar]