Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2003 Aug;74(8):1090–1094. doi: 10.1136/jnnp.74.8.1090

Spinal cord atrophy and disability in multiple sclerosis over four years: application of a reproducible automated technique in monitoring disease progression in a cohort of the interferon ß-1a (Rebif) treatment trial

X Lin 1, C Tench 1, B Turner 1, L Blumhardt 1, C Constantinescu 1
PMCID: PMC1738612  PMID: 12876240

Abstract

Background: Pathology in the cervical spinal cord is considered an important cause of disability in multiple sclerosis. However, the majority of serial studies have failed to find a correlation between spinal cord atrophy and disability.

Objectives: To use a highly reproducible and accurate method to quantify spinal cord area change on three dimensional magnetic resonance imaging and relate this to disability change in patients with multiple sclerosis.

Methods: 38 patients with multiple sclerosis (20 with the relapsing–remitting (RRMS) form and 18 with the secondary progressive (SPMS) form) were imaged at baseline and at months 6, 12, 18, and 48 during two treatment trials of the high dose subcutaneous thrice weekly interferon ß-1a (IFNß, Rebif). Thirty one healthy subjects were also imaged at baseline. Upper cervical cord area (UCCA) was measured using Sobel edge detection.

Results: The intraobserver coefficient of variation of the method was 0.42%. A significant reduction in UCCA was detected at month 6 in the placebo group (p = 0.04) and at month 12 for INFß (p = 0.03). The mean reduction of UCCA at month 48 was 5.7% for patients initially on placebo who received treatment at 24 months (RRMS) or at 36 months (SPMS), and 4.5% for those on IFNß throughout the study (p = 0.35). The change in UCCA was significantly correlated with change in the expanded disability status scale at month 12 (r = 0.4, p = 0.016), month 18 (r = 0.32, p = 0.05), and month 48 (r = 0.4, p = 0.016) in the total cohort.

Conclusions: Despite the small number of patients studied and the possible confounding effects of interferon treatment, this study showed that edge detection is reproducible and sensitive to changes in spinal cord area, and that this change is related to changes in clinical disability. This suggests a role for measurement of spinal cord atrophy in monitoring disease progression and possible treatment effects in clinical trails.

Full Text

The Full Text of this article is available as a PDF (151.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bjartmar C., Kidd G., Mörk S., Rudick R., Trapp B. D. Neurological disability correlates with spinal cord axonal loss and reduced N-acetyl aspartate in chronic multiple sclerosis patients. Ann Neurol. 2000 Dec;48(6):893–901. [PubMed] [Google Scholar]
  2. Bjartmar C., Kinkel R. P., Kidd G., Rudick R. A., Trapp B. D. Axonal loss in normal-appearing white matter in a patient with acute MS. Neurology. 2001 Oct 9;57(7):1248–1252. doi: 10.1212/wnl.57.7.1248. [DOI] [PubMed] [Google Scholar]
  3. Edwards S. G., Gong Q. Y., Liu C., Zvartau M. E., Jaspan T., Roberts N., Blumhardt L. D. Infratentorial atrophy on magnetic resonance imaging and disability in multiple sclerosis. Brain. 1999 Feb;122(Pt 2):291–301. doi: 10.1093/brain/122.2.291. [DOI] [PubMed] [Google Scholar]
  4. Evangelou N., Esiri M. M., Smith S., Palace J., Matthews P. M. Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis. Ann Neurol. 2000 Mar;47(3):391–395. [PubMed] [Google Scholar]
  5. Ferguson B., Matyszak M. K., Esiri M. M., Perry V. H. Axonal damage in acute multiple sclerosis lesions. Brain. 1997 Mar;120(Pt 3):393–399. doi: 10.1093/brain/120.3.393. [DOI] [PubMed] [Google Scholar]
  6. Filippi M., Campi A., Colombo B., Pereira C., Martinelli V., Baratti C., Comi G. A spinal cord MRI study of benign and secondary progressive multiple sclerosis. J Neurol. 1996 Jul;243(7):502–505. doi: 10.1007/BF00886870. [DOI] [PubMed] [Google Scholar]
  7. Filippi M., Colombo B., Rovaris M., Pereira C., Martinelli V., Comi G. A longitudinal magnetic resonance imaging study of the cervical cord in multiple sclerosis. J Neuroimaging. 1997 Apr;7(2):78–80. doi: 10.1111/jon19977278. [DOI] [PubMed] [Google Scholar]
  8. Filippi M., Yousry T., Horsfield M. A., Alkadhi H., Rovaris M., Campi A., Voltz R., Comi G. A high-resolution three-dimensional T1-weighted gradient echo sequence improves the detection of disease activity in multiple sclerosis. Ann Neurol. 1996 Dec;40(6):901–907. doi: 10.1002/ana.410400612. [DOI] [PubMed] [Google Scholar]
  9. Gasperini C., Paolillo A., Giugni E., Galgani S., Bagnato F., Mainero C., Onesti E., Bastianello S., Pozzilli C. MRI brain volume changes in relapsing-remitting multiple sclerosis patients treated with interferon beta-1a. Mult Scler. 2002 Apr;8(2):119–123. doi: 10.1191/1352458502ms788oa. [DOI] [PubMed] [Google Scholar]
  10. Gonen O., Catalaa I., Babb J. S., Ge Y., Mannon L. J., Kolson D. L., Grossman R. I. Total brain N-acetylaspartate: a new measure of disease load in MS. Neurology. 2000 Jan 11;54(1):15–19. doi: 10.1212/wnl.54.1.15. [DOI] [PubMed] [Google Scholar]
  11. Kameyama T., Hashizume Y., Ando T., Takahashi A. Morphometry of the normal cadaveric cervical spinal cord. Spine (Phila Pa 1976) 1994 Sep 15;19(18):2077–2081. doi: 10.1097/00007632-199409150-00013. [DOI] [PubMed] [Google Scholar]
  12. Kawade Y. Quantitation of neutralization of interferon by antibody. Methods Enzymol. 1986;119:558–573. doi: 10.1016/0076-6879(86)19076-8. [DOI] [PubMed] [Google Scholar]
  13. Kidd D., Thorpe J. W., Kendall B. E., Barker G. J., Miller D. H., McDonald W. I., Thompson A. J. MRI dynamics of brain and spinal cord in progressive multiple sclerosis. J Neurol Neurosurg Psychiatry. 1996 Jan;60(1):15–19. doi: 10.1136/jnnp.60.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kurtzke J. F. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983 Nov;33(11):1444–1452. doi: 10.1212/wnl.33.11.1444. [DOI] [PubMed] [Google Scholar]
  15. Lin X., Blumhardt L. D. Inflammation and atrophy in multiple sclerosis: MRI associations with disease course. J Neurol Sci. 2001 Aug 15;189(1-2):99–104. doi: 10.1016/s0022-510x(01)00576-7. [DOI] [PubMed] [Google Scholar]
  16. Liu C., Blumhardt L. D. Disability outcome measures in therapeutic trials of relapsing-remitting multiple sclerosis: effects of heterogeneity of disease course in placebo cohorts. J Neurol Neurosurg Psychiatry. 2000 Apr;68(4):450–457. doi: 10.1136/jnnp.68.4.450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Liu C., Edwards S., Gong Q., Roberts N., Blumhardt L. D. Three dimensional MRI estimates of brain and spinal cord atrophy in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1999 Mar;66(3):323–330. doi: 10.1136/jnnp.66.3.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liu C., Li Wan Po A., Blumhardt L. D. "Summary measure" statistic for assessing the outcome of treatment trials in relapsing-remitting multiple sclerosis. J Neurol Neurosurg Psychiatry. 1998 Jun;64(6):726–729. doi: 10.1136/jnnp.64.6.726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Losseff N. A., Webb S. L., O'Riordan J. I., Page R., Wang L., Barker G. J., Tofts P. S., McDonald W. I., Miller D. H., Thompson A. J. Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain. 1996 Jun;119(Pt 3):701–708. doi: 10.1093/brain/119.3.701. [DOI] [PubMed] [Google Scholar]
  20. Molyneux P. D., Kappos L., Polman C., Pozzilli C., Barkhof F., Filippi M., Yousry T., Hahn D., Wagner K., Ghazi M. The effect of interferon beta-1b treatment on MRI measures of cerebral atrophy in secondary progressive multiple sclerosis. European Study Group on Interferon beta-1b in secondary progressive multiple sclerosis. Brain. 2000 Nov;123(Pt 11):2256–2263. doi: 10.1093/brain/123.11.2256. [DOI] [PubMed] [Google Scholar]
  21. Nijeholt G. J., van Walderveen M. A., Castelijns J. A., van Waesberghe J. H., Polman C., Scheltens P., Rosier P. F., Jongen P. J., Barkhof F. Brain and spinal cord abnormalities in multiple sclerosis. Correlation between MRI parameters, clinical subtypes and symptoms. Brain. 1998 Apr;121(Pt 4):687–697. doi: 10.1093/brain/121.4.687. [DOI] [PubMed] [Google Scholar]
  22. Oppenheimer D. R. The cervical cord in multiple sclerosis. Neuropathol Appl Neurobiol. 1978 Mar-Apr;4(2):151–162. doi: 10.1111/j.1365-2990.1978.tb00555.x. [DOI] [PubMed] [Google Scholar]
  23. Panitch H., Goodin D. S., Francis G., Chang P., Coyle P. K., O'Connor P., Monaghan E., Li D., Weinshenker B., EVIDENCE Study Group. EVidence of Interferon Dose-response: Europian North American Compartative Efficacy Randomized, comparative study of interferon beta-1a treatment regimens in MS: The EVIDENCE Trial. Neurology. 2002 Nov 26;59(10):1496–1506. doi: 10.1212/01.wnl.0000034080.43681.da. [DOI] [PubMed] [Google Scholar]
  24. Paolillo A., Coles A. J., Molyneux P. D., Gawne-Cain M., MacManus D., Barker G. J., Compston D. A., Miller D. H. Quantitative MRI in patients with secondary progressive MS treated with monoclonal antibody Campath 1H. Neurology. 1999 Sep 11;53(4):751–757. doi: 10.1212/wnl.53.4.751. [DOI] [PubMed] [Google Scholar]
  25. Poser C. M., Paty D. W., Scheinberg L., McDonald W. I., Davis F. A., Ebers G. C., Johnson K. P., Sibley W. A., Silberberg D. H., Tourtellotte W. W. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol. 1983 Mar;13(3):227–231. doi: 10.1002/ana.410130302. [DOI] [PubMed] [Google Scholar]
  26. Ross C., Clemmesen K. M., Svenson M., Sørensen P. S., Koch-Henriksen N., Skovgaard G. L., Bendtzen K. Immunogenicity of interferon-beta in multiple sclerosis patients: influence of preparation, dosage, dose frequency, and route of administration. Danish Multiple Sclerosis Study Group. Ann Neurol. 2000 Nov;48(5):706–712. [PubMed] [Google Scholar]
  27. Rovaris M., Bozzali M., Santuccio G., Ghezzi A., Caputo D., Montanari E., Bertolotto A., Bergamaschi R., Capra R., Mancardi G. In vivo assessment of the brain and cervical cord pathology of patients with primary progressive multiple sclerosis. Brain. 2001 Dec;124(Pt 12):2540–2549. doi: 10.1093/brain/124.12.2540. [DOI] [PubMed] [Google Scholar]
  28. Rovaris M., Comi G., Rocca M. A., Wolinsky J. S., Filippi M., European/Canadian Glatiramer Acetate Study Group Short-term brain volume change in relapsing-remitting multiple sclerosis: effect of glatiramer acetate and implications. Brain. 2001 Sep;124(Pt 9):1803–1812. doi: 10.1093/brain/124.9.1803. [DOI] [PubMed] [Google Scholar]
  29. Rudick R. A., Fisher E., Lee J. C., Simon J., Jacobs L. Use of the brain parenchymal fraction to measure whole brain atrophy in relapsing-remitting MS. Multiple Sclerosis Collaborative Research Group. Neurology. 1999 Nov 10;53(8):1698–1704. doi: 10.1212/wnl.53.8.1698. [DOI] [PubMed] [Google Scholar]
  30. Rudick R. A., Simonian N. A., Alam J. A., Campion M., Scaramucci J. O., Jones W., Coats M. E., Goodkin D. E., Weinstock-Guttman B., Herndon R. M. Incidence and significance of neutralizing antibodies to interferon beta-1a in multiple sclerosis. Multiple Sclerosis Collaborative Research Group (MSCRG) Neurology. 1998 May;50(5):1266–1272. doi: 10.1212/wnl.50.5.1266. [DOI] [PubMed] [Google Scholar]
  31. Stevenson V. L., Leary S. M., Losseff N. A., Parker G. J., Barker G. J., Husmani Y., Miller D. H., Thompson A. J. Spinal cord atrophy and disability in MS: a longitudinal study. Neurology. 1998 Jul;51(1):234–238. doi: 10.1212/wnl.51.1.234. [DOI] [PubMed] [Google Scholar]
  32. Stevenson V. L., Miller D. H., Leary S. M., Rovaris M., Barkhof F., Brochet B., Dousset V., Filippi M., Hintzen R., Montalban X. One year follow up study of primary and transitional progressive multiple sclerosis. J Neurol Neurosurg Psychiatry. 2000 Jun;68(6):713–718. doi: 10.1136/jnnp.68.6.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Thorpe J. W., Kidd D., Moseley I. F., Kenndall B. E., Thompson A. J., MacManus D. G., McDonald W. I., Miller D. H. Serial gadolinium-enhanced MRI of the brain and spinal cord in early relapsing-remitting multiple sclerosis. Neurology. 1996 Feb;46(2):373–378. doi: 10.1212/wnl.46.2.373. [DOI] [PubMed] [Google Scholar]
  34. Trapp B. D., Peterson J., Ransohoff R. M., Rudick R., Mörk S., Bö L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med. 1998 Jan 29;338(5):278–285. doi: 10.1056/NEJM199801293380502. [DOI] [PubMed] [Google Scholar]
  35. Trapp B. D., Ransohoff R., Rudick R. Axonal pathology in multiple sclerosis: relationship to neurologic disability. Curr Opin Neurol. 1999 Jun;12(3):295–302. doi: 10.1097/00019052-199906000-00008. [DOI] [PubMed] [Google Scholar]
  36. Vaithianathar Lalitha, Tench Chris R., Morgan Paul S., Constantinescu Cris S. Magnetic resonance imaging of the cervical spinal cord in multiple sclerosis--a quantitative T1 relaxation time mapping approach. J Neurol. 2003 Mar;250(3):307–315. doi: 10.1007/s00415-003-1001-8. [DOI] [PubMed] [Google Scholar]
  37. Zhou L. Q., Zhu Y. M., Bergot C., Laval-Jeantet A. M., Bousson V., Laredo J. D., Laval-Jeantet M. A method of radio-frequency inhomogeneity correction for brain tissue segmentation in MRI. Comput Med Imaging Graph. 2001 Sep-Oct;25(5):379–389. doi: 10.1016/s0895-6111(01)00006-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES