Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Mar;64(3):959–965. doi: 10.1128/iai.64.3.959-965.1996

Pasteurella multocida toxin is a mitogen for bone cells in primary culture.

P B Mullan 1, A J Lax 1
PMCID: PMC173863  PMID: 8641807

Abstract

The effect of recombinant Pasteurella multocida toxin (PMT) on primary cultures of embryonic chick bone-derived osteoblastic cells was investigated. It was found that PMT was a potent mitogen for primary derived chicken osteoblasts. The toxin stimulated DNA synthesis and cell proliferation in quiescent osteoblasts at the first passage and accelerated cell growth in subconfluent cultures. Cell viability was not affected by PMT, even at relatively high concentrations. Osteoblast numbers increased in a dose-dependent manner in response to PMT. Intracellular inositol phosphates were elevated in response to PMT, but no elevation in cyclic AMP (cAMP) levels was evident. Indeed, PMT inhibited cAMP elevation in osteoblasts in response to cholera toxin at a stage before other PMT-mediated events take place. In addition to increased cell turnover, PMT down-regulated the expression of several markers of osteoblast differentiation. Both alkaline phosphatase and type I collagen were reduced, but osteonectin was not affected. The in vitro deposition of mineral in cultures of primary osteoblasts and osteoblast-like osteosarcoma cells was also inhibited by the presence of PMT. This suggests that PMT interferes with differentiation at a preosteoblastic stage.

Full Text

The Full Text of this article is available as a PDF (302.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bellows C. G., Aubin J. E., Heersche J. N., Antosz M. E. Mineralized bone nodules formed in vitro from enzymatically released rat calvaria cell populations. Calcif Tissue Int. 1986 Mar;38(3):143–154. doi: 10.1007/BF02556874. [DOI] [PubMed] [Google Scholar]
  2. Beresford J. N., Graves S. E., Smoothy C. A. Formation of mineralized nodules by bone derived cells in vitro: a model of bone formation? Am J Med Genet. 1993 Jan 15;45(2):163–178. doi: 10.1002/ajmg.1320450205. [DOI] [PubMed] [Google Scholar]
  3. Blanchard J. M., Piechaczyk M., Dani C., Chambard J. C., Franchi A., Pouyssegur J., Jeanteur P. c-myc gene is transcribed at high rate in G0-arrested fibroblasts and is post-transcriptionally regulated in response to growth factors. Nature. 1985 Oct 3;317(6036):443–445. doi: 10.1038/317443a0. [DOI] [PubMed] [Google Scholar]
  4. Bolander M. E., Robey P. G., Fisher L. W., Conn K. M., Prabhakar B. S., Termine J. D. Monoclonal antibodies against osteonectin show conservation of epitopes across species. Calcif Tissue Int. 1989 Aug;45(2):74–80. doi: 10.1007/BF02561405. [DOI] [PubMed] [Google Scholar]
  5. Buys W. E., Smith H. E., Kamps A. M., Kamp E. M., Smits M. A. Sequence of the dermonecrotic toxin of Pasteurella multocida ssp. multocida. Nucleic Acids Res. 1990 May 11;18(9):2815–2816. doi: 10.1093/nar/18.9.2815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Canalis E. Effect of growth factors on bone cell replication and differentiation. Clin Orthop Relat Res. 1985 Mar;(193):246–263. [PubMed] [Google Scholar]
  7. Caprioli A., Donelli G., Falbo V., Possenti R., Roda L. G., Roscetti G., Ruggeri F. M. A cell division-active protein from E. coli. Biochem Biophys Res Commun. 1984 Jan 30;118(2):587–593. doi: 10.1016/0006-291x(84)91343-3. [DOI] [PubMed] [Google Scholar]
  8. Caprioli A., Falbo V., Roda L. G., Ruggeri F. M., Zona C. Partial purification and characterization of an escherichia coli toxic factor that induces morphological cell alterations. Infect Immun. 1983 Mar;39(3):1300–1306. doi: 10.1128/iai.39.3.1300-1306.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Centrella M., McCarthy T. L., Canalis E. Platelet-derived growth factor enhances deoxyribonucleic acid and collagen synthesis in osteoblast-enriched cultures from fetal rat parietal bone. Endocrinology. 1989 Jul;125(1):13–19. doi: 10.1210/endo-125-1-13. [DOI] [PubMed] [Google Scholar]
  10. Cochran B. H., Zullo J., Verma I. M., Stiles C. D. Expression of the c-fos gene and of an fos-related gene is stimulated by platelet-derived growth factor. Science. 1984 Nov 30;226(4678):1080–1082. doi: 10.1126/science.6093261. [DOI] [PubMed] [Google Scholar]
  11. De Rycke J., González E. A., Blanco J., Oswald E., Blanco M., Boivin R. Evidence for two types of cytotoxic necrotizing factor in human and animal clinical isolates of Escherichia coli. J Clin Microbiol. 1990 Apr;28(4):694–699. doi: 10.1128/jcm.28.4.694-699.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dicker P., Rozengurt E. Phorbol esters and vasopressin stimulate DNA synthesis by a common mechanism. Nature. 1980 Oct 16;287(5783):607–612. doi: 10.1038/287607a0. [DOI] [PubMed] [Google Scholar]
  13. Felix R., Fleisch H., Frandsen P. L. Effect of Pasteurella multocida toxin on bone resorption in vitro. Infect Immun. 1992 Dec;60(12):4984–4988. doi: 10.1128/iai.60.12.4984-4988.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gerstenfeld L. C., Chipman S. D., Kelly C. M., Hodgens K. J., Lee D. D., Landis W. J. Collagen expression, ultrastructural assembly, and mineralization in cultures of chicken embryo osteoblasts. J Cell Biol. 1988 Mar;106(3):979–989. doi: 10.1083/jcb.106.3.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Globus R. K., Plouet J., Gospodarowicz D. Cultured bovine bone cells synthesize basic fibroblast growth factor and store it in their extracellular matrix. Endocrinology. 1989 Mar;124(3):1539–1547. doi: 10.1210/endo-124-3-1539. [DOI] [PubMed] [Google Scholar]
  16. Hata R., Hori H., Nagai Y., Tanaka S., Kondo M., Hiramatsu M., Utsumi N., Kumegawa M. Selective inhibition of type I collagen synthesis in osteoblastic cells by epidermal growth factor. Endocrinology. 1984 Sep;115(3):867–876. doi: 10.1210/endo-115-3-867. [DOI] [PubMed] [Google Scholar]
  17. Higgins T. E., Murphy A. C., Staddon J. M., Lax A. J., Rozengurt E. Pasteurella multocida toxin is a potent inducer of anchorage-independent cell growth. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4240–4244. doi: 10.1073/pnas.89.10.4240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Horowitz M. C. Cytokines and estrogen in bone: anti-osteoporotic effects. Science. 1993 Apr 30;260(5108):626–627. doi: 10.1126/science.8480174. [DOI] [PubMed] [Google Scholar]
  19. Jongen J. W., Willemstein-Van Hove E. C., Van der Meer J. M., Bos M. P., Jüppner H., Segre G. V., Abou-Samra A. B., Feyen J. H., Herrmann-Erlee M. P. Down-regulation of the receptor for parathyroid hormone (PTH) and PTH-related peptide by transforming growth factor-beta in primary fetal rat osteoblasts. Endocrinology. 1995 Aug;136(8):3260–3266. doi: 10.1210/endo.136.8.7628359. [DOI] [PubMed] [Google Scholar]
  20. Kimman T. G., Löwik C. W., van de Wee-Pals L. J., Thesingh C. W., Defize P., Kamp E. M., Bijvoet O. L. Stimulation of bone resorption by inflamed nasal mucosa, dermonecrotic toxin-containing conditioned medium from Pasteurella multocida, and purified dermonecrotic toxin from P. multocida. Infect Immun. 1987 Sep;55(9):2110–2116. doi: 10.1128/iai.55.9.2110-2116.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Lax A. J., Chanter N. Cloning of the toxin gene from Pasteurella multocida and its role in atrophic rhinitis. J Gen Microbiol. 1990 Jan;136(1):81–87. doi: 10.1099/00221287-136-1-81. [DOI] [PubMed] [Google Scholar]
  23. Lax A. J., Chanter N., Pullinger G. D., Higgins T., Staddon J. M., Rozengurt E. Sequence analysis of the potent mitogenic toxin of Pasteurella multocida. FEBS Lett. 1990 Dec 17;277(1-2):59–64. doi: 10.1016/0014-5793(90)80809-w. [DOI] [PubMed] [Google Scholar]
  24. McCauley L. K., Koh A. J., Beecher C. A., Cui Y., Decker J. D., Franceschi R. T. Effects of differentiation and transforming growth factor beta 1 on PTH/PTHrP receptor mRNA levels in MC3T3-E1 cells. J Bone Miner Res. 1995 Aug;10(8):1243–1255. doi: 10.1002/jbmr.5650100815. [DOI] [PubMed] [Google Scholar]
  25. McGEE-RUSSELL S. M. Histochemical methods for calcium. J Histochem Cytochem. 1958 Jan;6(1):22–42. doi: 10.1177/6.1.22. [DOI] [PubMed] [Google Scholar]
  26. Meikle M. C., Bord S., Hembry R. M., Compston J., Croucher P. I., Reynolds J. J. Human osteoblasts in culture synthesize collagenase and other matrix metalloproteinases in response to osteotropic hormones and cytokines. J Cell Sci. 1992 Dec;103(Pt 4):1093–1099. doi: 10.1242/jcs.103.4.1093. [DOI] [PubMed] [Google Scholar]
  27. Michelangeli V. P., Findlay D. M., Fletcher A., Martin T. J. Calcitonin gene-related peptide (CGRP) acts independently of calcitonin on cyclic AMP formation in clonal osteogenic sarcoma cells (UMR 106-01). Calcif Tissue Int. 1986 Jul;39(1):44–48. doi: 10.1007/BF02555739. [DOI] [PubMed] [Google Scholar]
  28. Murphy A. C., Rozengurt E. Pasteurella multocida toxin selectively facilitates phosphatidylinositol 4,5-bisphosphate hydrolysis by bombesin, vasopressin, and endothelin. Requirement for a functional G protein. J Biol Chem. 1992 Dec 15;267(35):25296–25303. [PubMed] [Google Scholar]
  29. Nicolas V., Nefussi J. R., Collin P., Forest N. Effects of acidic fibroblast growth factor and epidermal growth factor on subconfluent fetal rat calvaria cell cultures: DNA synthesis and alkaline phosphatase activity. Bone Miner. 1990 Feb;8(2):145–156. doi: 10.1016/0169-6009(90)90117-x. [DOI] [PubMed] [Google Scholar]
  30. Nijweide P. J., van der Plas A., Scherft J. P. Biochemical and histological studies on various bone cell preparations. Calcif Tissue Int. 1981;33(5):529–540. doi: 10.1007/BF02409485. [DOI] [PubMed] [Google Scholar]
  31. Nånberg E., Rozengurt E. Temporal relationship between inositol polyphosphate formation and increases in cytosolic Ca2+ in quiescent 3T3 cells stimulated by platelet-derived growth factor, bombesin and vasopressin. EMBO J. 1988 Sep;7(9):2741–2747. doi: 10.1002/j.1460-2075.1988.tb03128.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Oswald E., De Rycke J. A single protein of 110 kDa is associated with the multinucleating and necrotizing activity coded by the Vir plasmid of Escherichia coli. FEMS Microbiol Lett. 1990 Mar 15;56(3):279–284. [PubMed] [Google Scholar]
  33. Oswald E., Sugai M., Labigne A., Wu H. C., Fiorentini C., Boquet P., O'Brien A. D. Cytotoxic necrotizing factor type 2 produced by virulent Escherichia coli modifies the small GTP-binding proteins Rho involved in assembly of actin stress fibers. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3814–3818. doi: 10.1073/pnas.91.9.3814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Petersen S. K. The complete nucleotide sequence of the Pasteurella multocida toxin gene and evidence for a transcriptional repressor, TxaR. Mol Microbiol. 1990 May;4(5):821–830. doi: 10.1111/j.1365-2958.1990.tb00652.x. [DOI] [PubMed] [Google Scholar]
  35. Raisz L. G. Hormonal regulation of bone growth and remodelling. Ciba Found Symp. 1988;136:226–238. doi: 10.1002/9780470513637.ch14. [DOI] [PubMed] [Google Scholar]
  36. Rozengurt E. Early signals in the mitogenic response. Science. 1986 Oct 10;234(4773):161–166. doi: 10.1126/science.3018928. [DOI] [PubMed] [Google Scholar]
  37. Rozengurt E., Higgins T., Chanter N., Lax A. J., Staddon J. M. Pasteurella multocida toxin: potent mitogen for cultured fibroblasts. Proc Natl Acad Sci U S A. 1990 Jan;87(1):123–127. doi: 10.1073/pnas.87.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rozengurt E., Sinnett-Smith J. Bombesin stimulation of DNA synthesis and cell division in cultures of Swiss 3T3 cells. Proc Natl Acad Sci U S A. 1983 May;80(10):2936–2940. doi: 10.1073/pnas.80.10.2936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Scutt A., Mayer H., Wingender E. New perspectives in the differentiation of bone-forming cells. Biofactors. 1992 Dec;4(1):1–13. [PubMed] [Google Scholar]
  40. Simmons D. J., Kent G. N., Jilka R. L., Scott D. M., Fallon M., Cohn D. V. Formation of bone by isolated, cultured osteoblasts in millipore diffusion chambers. Calcif Tissue Int. 1982 May;34(3):291–294. doi: 10.1007/BF02411253. [DOI] [PubMed] [Google Scholar]
  41. Staddon J. M., Chanter N., Lax A. J., Higgins T. E., Rozengurt E. Pasteurella multocida toxin, a potent mitogen, stimulates protein kinase C-dependent and -independent protein phosphorylation in Swiss 3T3 cells. J Biol Chem. 1990 Jul 15;265(20):11841–11848. [PubMed] [Google Scholar]
  42. Stavric S., Speirs J. I., Konowalchuk J., Jeffrey D. Stimulation of cyclic AMP secretion in Vero cells by enterotoxins of Escherichia coli and Vibrio cholerae. Infect Immun. 1978 Aug;21(2):514–517. doi: 10.1128/iai.21.2.514-517.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Termine J. D., Kleinman H. K., Whitson S. W., Conn K. M., McGarvey M. L., Martin G. R. Osteonectin, a bone-specific protein linking mineral to collagen. Cell. 1981 Oct;26(1 Pt 1):99–105. doi: 10.1016/0092-8674(81)90037-4. [DOI] [PubMed] [Google Scholar]
  44. Toriyama K., Morita I., Murota S. The existence of distinct classes of prostaglandin E2 receptors mediating adenylate cyclase and phospholipase C pathways in osteoblastic clone MC3T3-E1. Prostaglandins Leukot Essent Fatty Acids. 1992 May;46(1):15–20. doi: 10.1016/0952-3278(92)90053-l. [DOI] [PubMed] [Google Scholar]
  45. Walker K. E., Weiss A. A. Characterization of the dermonecrotic toxin in members of the genus Bordetella. Infect Immun. 1994 Sep;62(9):3817–3828. doi: 10.1128/iai.62.9.3817-3828.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Ward P. N., Higgins T. E., Murphy A. C., Mullan P. B., Rozengurt E., Lax A. J. Mutation of a putative ADP-ribosylation motif in the Pasteurella multocida toxin does not affect mitogenic activity. FEBS Lett. 1994 Mar 28;342(1):81–84. doi: 10.1016/0014-5793(94)80589-x. [DOI] [PubMed] [Google Scholar]
  47. Wong G. L., Ng M. C. Maturation-associated changes in the cellular composition of mouse calvariae and in the biochemical characteristics of calvarial cells separated into subclasses on Percoll density gradients. J Bone Miner Res. 1992 Jun;7(6):701–708. doi: 10.1002/jbmr.5650070615. [DOI] [PubMed] [Google Scholar]
  48. Yoshikawa T., Hanada T. Histopathological studies on pigs with atrophic rhinitis showing retarded growth. Nihon Juigaku Zasshi. 1981 Apr;43(2):221–231. doi: 10.1292/jvms1939.43.221. [DOI] [PubMed] [Google Scholar]
  49. van Diemen P. M., de Vries Reilingh G., Parmentier H. K. Immune responses of piglets to Pasteurella multocida toxin and toxoid. Vet Immunol Immunopathol. 1994 Jun;41(3-4):307–321. doi: 10.1016/0165-2427(94)90104-x. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES