Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Mar;64(3):974–979. doi: 10.1128/iai.64.3.974-979.1996

Induction of antigen-specific antibodies in vaginal secretions by using a nontoxic mutant of heat-labile enterotoxin as a mucosal adjuvant.

A Di Tommaso 1, G Saletti 1, M Pizza 1, R Rappuoli 1, G Dougan 1, S Abrignani 1, G Douce 1, M T De Magistris 1
PMCID: PMC173865  PMID: 8641809

Abstract

Immunization of the female reproductive tract is important for protection against sexually transmitted diseases and other pathogens of the reproductive tract. However, intravaginal immunization with soluble antigens generally does not induce high levels of secretory immunoglobulin A (IgA). We recently developed safe mucosal adjuvants by genetically detoxifying Escherichia coli heat-labile enterotoxin, a molecule with a strong mucosal adjuvant activity, and here we describe the use of the nontoxic mutant LTK63 to induce a response in the mouse vagina against ovalbumin (Ova). We compared intravaginal and intranasal routes of immunization for induction of systemic and vaginal responses against LTK63 and Ova. We found that LTK63 is a potent mucosal immunogen when given by either the intravaginal or intranasal route. It induces a strong systemic antibody response and IgG and long-lasting IgA in the vagina. The appearance of vaginal IgA is delayed in the intranasally immunized mice, but the levels of vaginal anti-LTK63 IgA after repeated immunizations are higher in the intranasally immunized mice than in the intravaginally immunized mice. LTK63 also acts as a mucosal adjuvant, inducing a serum response against Ova, when given by both the intravaginal and intranasal routes. However, vaginal IgA against Ova is stimulated more efficiently when LTK63 and antigen are given intranasally. In conclusion, our results demonstrate that LTK63 can be used as a mucosal adjuvant to induce antigen-specific antibodies in vaginal secretions and show that the intranasal route of immunization is the most effective for this purpose.

Full Text

The Full Text of this article is available as a PDF (249.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Czerkinsky C. C., Nilsson L. A., Nygren H., Ouchterlony O., Tarkowski A. A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J Immunol Methods. 1983 Dec 16;65(1-2):109–121. doi: 10.1016/0022-1759(83)90308-3. [DOI] [PubMed] [Google Scholar]
  2. Donta S. T., Moon H. W., Whipp S. C. Detection of heat-labile Escherichia coli enterotoxin with the use of adrenal cells in tissue culture. Science. 1974 Jan 25;183(4122):334–336. doi: 10.1126/science.183.4122.334. [DOI] [PubMed] [Google Scholar]
  3. Douce G., Turcotte C., Cropley I., Roberts M., Pizza M., Domenghini M., Rappuoli R., Dougan G. Mutants of Escherichia coli heat-labile toxin lacking ADP-ribosyltransferase activity act as nontoxic, mucosal adjuvants. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1644–1648. doi: 10.1073/pnas.92.5.1644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Haneberg B., Kendall D., Amerongen H. M., Apter F. M., Kraehenbuhl J. P., Neutra M. R. Induction of specific immunoglobulin A in the small intestine, colon-rectum, and vagina measured by a new method for collection of secretions from local mucosal surfaces. Infect Immun. 1994 Jan;62(1):15–23. doi: 10.1128/iai.62.1.15-23.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Holmgren J., Lycke N., Czerkinsky C. Cholera toxin and cholera B subunit as oral-mucosal adjuvant and antigen vector systems. Vaccine. 1993 Sep;11(12):1179–1184. doi: 10.1016/0264-410x(93)90039-z. [DOI] [PubMed] [Google Scholar]
  6. Langermann S., Palaszynski S., Sadziene A., Stover C. K., Koenig S. Systemic and mucosal immunity induced by BCG vector expressing outer-surface protein A of Borrelia burgdorferi. Nature. 1994 Dec 8;372(6506):552–555. doi: 10.1038/372552a0. [DOI] [PubMed] [Google Scholar]
  7. Lee E. J., Kaminchik J., Hankins W. D. Expression of xenotropic-like env RNA sequences in normal DBA/2 and NZB mouse tissues. J Virol. 1984 Jul;51(1):247–250. doi: 10.1128/jvi.51.1.247-250.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. McGhee J. R., Mestecky J., Dertzbaugh M. T., Eldridge J. H., Hirasawa M., Kiyono H. The mucosal immune system: from fundamental concepts to vaccine development. Vaccine. 1992;10(2):75–88. doi: 10.1016/0264-410x(92)90021-b. [DOI] [PubMed] [Google Scholar]
  9. Parr E. L., Parr M. B. A comparison of antibody titres in mouse uterine fluid after immunization by several routes, and the effect of the uterus on antibody titres in vaginal fluid. J Reprod Fertil. 1990 Jul;89(2):619–625. doi: 10.1530/jrf.0.0890619. [DOI] [PubMed] [Google Scholar]
  10. Parr M. B., Parr E. L. Antigen recognition in the female reproductive tract: I. Uptake of intraluminal protein tracers in the mouse vagina. J Reprod Immunol. 1990 Apr;17(2):101–114. doi: 10.1016/0165-0378(90)90029-6. [DOI] [PubMed] [Google Scholar]
  11. Parr M. B., Parr E. L. Langerhans cells and T lymphocyte subsets in the murine vagina and cervix. Biol Reprod. 1991 Mar;44(3):491–498. doi: 10.1095/biolreprod44.3.491. [DOI] [PubMed] [Google Scholar]
  12. Pizza M., Domenighini M., Hol W., Giannelli V., Fontana M. R., Giuliani M. M., Magagnoli C., Peppoloni S., Manetti R., Rappuoli R. Probing the structure-activity relationship of Escherichia coli LT-A by site-directed mutagenesis. Mol Microbiol. 1994 Oct;14(1):51–60. doi: 10.1111/j.1365-2958.1994.tb01266.x. [DOI] [PubMed] [Google Scholar]
  13. Sedgwick J. D., Holt P. G. A solid-phase immunoenzymatic technique for the enumeration of specific antibody-secreting cells. J Immunol Methods. 1983 Feb 25;57(1-3):301–309. doi: 10.1016/0022-1759(83)90091-1. [DOI] [PubMed] [Google Scholar]
  14. Spangler B. D. Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol Rev. 1992 Dec;56(4):622–647. doi: 10.1128/mr.56.4.622-647.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Staats H. F., Jackson R. J., Marinaro M., Takahashi I., Kiyono H., McGhee J. R. Mucosal immunity to infection with implications for vaccine development. Curr Opin Immunol. 1994 Aug;6(4):572–583. doi: 10.1016/0952-7915(94)90144-9. [DOI] [PubMed] [Google Scholar]
  16. Thapar M. A., Parr E. L., Bozzola J. J., Parr M. B. Secretory immune responses in the mouse vagina after parenteral or intravaginal immunization with an immunostimulating complex (ISCOM). Vaccine. 1991 Feb;9(2):129–133. doi: 10.1016/0264-410x(91)90269-c. [DOI] [PubMed] [Google Scholar]
  17. Thapar M. A., Parr E. L., Parr M. B. Secretory immune responses in mouse vaginal fluid after pelvic, parenteral or vaginal immunization. Immunology. 1990 May;70(1):121–125. [PMC free article] [PubMed] [Google Scholar]
  18. Thapar M. A., Parr E. L., Parr M. B. The effect of adjuvants on antibody titers in mouse vaginal fluid after intravaginal immunization. J Reprod Immunol. 1990 Jun;17(3):207–216. doi: 10.1016/0165-0378(90)90003-o. [DOI] [PubMed] [Google Scholar]
  19. Walker R. I. New strategies for using mucosal vaccination to achieve more effective immunization. Vaccine. 1994 Apr;12(5):387–400. doi: 10.1016/0264-410x(94)90112-0. [DOI] [PubMed] [Google Scholar]
  20. Wu H. Y., Russell M. W. Induction of mucosal immunity by intranasal application of a streptococcal surface protein antigen with the cholera toxin B subunit. Infect Immun. 1993 Jan;61(1):314–322. doi: 10.1128/iai.61.1.314-322.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES