Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2003 Sep;74(9):1231–1235. doi: 10.1136/jnnp.74.9.1231

Working memory deficits in multiple sclerosis: a controlled study with auditory P600 correlates

C Sfagos 1, C Papageorgiou 1, K Kosma 1, E Kodopadelis 1, N Uzunoglu 1, D Vassilopoulos 1, A Rabavilas 1
PMCID: PMC1738660  PMID: 12933924

Abstract

Background: Recently, the P600 component of event related potentials, a waveform that is conceived to be generated and/or modulated by basal ganglia and cingulate area has been considered an index of the completion of any synchronised operation after target detection, having much in common with working memory operation. Moreover, dysfunction of these brain structures as well as working memory deficits have been implicated in the pathophysiology of multiple sclerosis. The aim of this study was to investigate the patterns of P600 elicited during a working memory test in multiple sclerosis patients compared with healthy controls.

Methods: Twenty two definite, chronic progressive multiple sclerosis patients, with recent exacerbation of their illness, and 20 normal subjects matched for age, sex, and educational level, were studied with a computerised version of the digit span test of Wechsler batteries. Auditory P600 were measured during the anticipatory period of this test.

Results: The patient group, as compared with healthy controls, showed significantly reduced latencies of P600 at left frontal areas and reduced P600 amplitudes at left temporoparietal region. Moreover, memory performance of patients was significantly more impaired when compared with healthy controls.

Conclusions: These findings may indicate that multiple sclerosis is associated with abnormal features of the completion of synchronised operation after target detection, as they are reflected by P600 amplitudes and latencies. Dysfunction of this mechanism may contribute to the identification of basic cognitive processes that could account for the cognitive deficits in multiple sclerosis.

Full Text

The Full Text of this article is available as a PDF (199.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amato M. P., Ponziani G., Siracusa G., Sorbi S. Cognitive dysfunction in early-onset multiple sclerosis: a reappraisal after 10 years. Arch Neurol. 2001 Oct;58(10):1602–1606. doi: 10.1001/archneur.58.10.1602. [DOI] [PubMed] [Google Scholar]
  2. Baddeley A. Recent developments in working memory. Curr Opin Neurobiol. 1998 Apr;8(2):234–238. doi: 10.1016/s0959-4388(98)80145-1. [DOI] [PubMed] [Google Scholar]
  3. Bermel Robert A., Bakshi Rohit, Tjoa Christopher, Puli Srinivas R., Jacobs Lawrence. Bicaudate ratio as a magnetic resonance imaging marker of brain atrophy in multiple sclerosis. Arch Neurol. 2002 Feb;59(2):275–280. doi: 10.1001/archneur.59.2.275. [DOI] [PubMed] [Google Scholar]
  4. Binder J. Functional magnetic resonance imaging. Language mapping. Neurosurg Clin N Am. 1997 Jul;8(3):383–392. [PubMed] [Google Scholar]
  5. Camp S. J., Stevenson V. L., Thompson A. J., Miller D. H., Borras C., Auriacombe S., Brochet B., Falautano M., Filippi M., Hérissé-Dulo L. Cognitive function in primary progressive and transitional progressive multiple sclerosis: a controlled study with MRI correlates. Brain. 1999 Jul;122(Pt 7):1341–1348. doi: 10.1093/brain/122.7.1341. [DOI] [PubMed] [Google Scholar]
  6. Collette Fabienne, Van der Linden Martial. Brain imaging of the central executive component of working memory. Neurosci Biobehav Rev. 2002 Mar;26(2):105–125. doi: 10.1016/s0149-7634(01)00063-x. [DOI] [PubMed] [Google Scholar]
  7. Conklin H. M., Curtis C. E., Katsanis J., Iacono W. G. Verbal working memory impairment in schizophrenia patients and their first-degree relatives: evidence from the digit span task. Am J Psychiatry. 2000 Feb;157(2):275–277. doi: 10.1176/appi.ajp.157.2.275. [DOI] [PubMed] [Google Scholar]
  8. DeSousa Eduardo Adonias, Albert Ross H., Kalman Bernadette. Cognitive impairments in multiple sclerosis: a review. Am J Alzheimers Dis Other Demen. 2002 Jan-Feb;17(1):23–29. doi: 10.1177/153331750201700104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Diamond B. J., DeLuca J., Kim H., Kelley S. M. The question of disproportionate impairments in visual and auditory information processing in multiple sclerosis. J Clin Exp Neuropsychol. 1997 Feb;19(1):34–42. doi: 10.1080/01688639708403834. [DOI] [PubMed] [Google Scholar]
  10. Falkenstein M., Hohnsbein J., Hoormann J. Effects of choice complexity on different subcomponents of the late positive complex of the event-related potential. Electroencephalogr Clin Neurophysiol. 1994 Mar;92(2):148–160. doi: 10.1016/0168-5597(94)90055-8. [DOI] [PubMed] [Google Scholar]
  11. Filippi M. Linking structural, metabolic and functional changes in multiple sclerosis. Eur J Neurol. 2001 Jul;8(4):291–297. doi: 10.1046/j.1468-1331.2001.00210.x. [DOI] [PubMed] [Google Scholar]
  12. Filippi M., Rocca M. A., Colombo B., Falini A., Codella M., Scotti G., Comi G. Functional magnetic resonance imaging correlates of fatigue in multiple sclerosis. Neuroimage. 2002 Mar;15(3):559–567. doi: 10.1006/nimg.2001.1011. [DOI] [PubMed] [Google Scholar]
  13. Foong J., Rozewicz L., Quaghebeur G., Thompson A. J., Miller D. H., Ron M. A. Neuropsychological deficits in multiple sclerosis after acute relapse. J Neurol Neurosurg Psychiatry. 1998 Apr;64(4):529–532. doi: 10.1136/jnnp.64.4.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Friederici A. D., von Cramon D. Y., Kotz S. A. Language related brain potentials in patients with cortical and subcortical left hemisphere lesions. Brain. 1999 Jun;122(Pt 6):1033–1047. doi: 10.1093/brain/122.6.1033. [DOI] [PubMed] [Google Scholar]
  15. García-Larrea L., Cézanne-Bert G. P3, positive slow wave and working memory load: a study on the functional correlates of slow wave activity. Electroencephalogr Clin Neurophysiol. 1998 Apr;108(3):260–273. doi: 10.1016/s0168-5597(97)00085-3. [DOI] [PubMed] [Google Scholar]
  16. Glassman R. B. A "theory of relativity" for cognitive elasticity of time and modality dimensions supporting constant working memory capacity: involvement of harmonics among ultradian clocks? Prog Neuropsychopharmacol Biol Psychiatry. 2000 Feb;24(2):163–182. doi: 10.1016/s0278-5846(99)00096-2. [DOI] [PubMed] [Google Scholar]
  17. Grigsby J., Ayarbe S. D., Kravcisin N., Busenbark D. Working memory impairment among persons with chronic progressive multiple sclerosis. J Neurol. 1994 Jan;241(3):125–131. doi: 10.1007/BF00868338. [DOI] [PubMed] [Google Scholar]
  18. Guillem F., N'Kaoua B., Rougier A., Claverie B. Intracranial topography of event-related potentials (N400/P600) elicited during a continuous recognition memory task. Psychophysiology. 1995 Jul;32(4):382–392. doi: 10.1111/j.1469-8986.1995.tb01221.x. [DOI] [PubMed] [Google Scholar]
  19. Guillem F., Rougier A., Claverie B. Short- and long-delay intracranial ERP repetition effects dissociate memory systems in the human brain. J Cogn Neurosci. 1999 Jul;11(4):437–458. doi: 10.1162/089892999563526. [DOI] [PubMed] [Google Scholar]
  20. Kurtzke J. F. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983 Nov;33(11):1444–1452. doi: 10.1212/wnl.33.11.1444. [DOI] [PubMed] [Google Scholar]
  21. Lalonde R., Hannequin D. The neurobiological basis of time estimation and temporal order. Rev Neurosci. 1999;10(2):151–173. doi: 10.1515/revneuro.1999.10.2.151. [DOI] [PubMed] [Google Scholar]
  22. Landrø N. I., Rund B. R., Lund A., Sundet K., Mjellem N., Asbjørnsen A., Thomsen T., Ersland L., Lundervold A., Smievoll A. I. Honig's model of working memory and brain activation: an fMRI study. Neuroreport. 2001 Dec 21;12(18):4047–4054. doi: 10.1097/00001756-200112210-00038. [DOI] [PubMed] [Google Scholar]
  23. Lehmann D., Skrandies W. Spatial analysis of evoked potentials in man--a review. Prog Neurobiol. 1984;23(3):227–250. doi: 10.1016/0301-0082(84)90003-0. [DOI] [PubMed] [Google Scholar]
  24. McMurray R. W. Bromocriptine in rheumatic and autoimmune diseases. Semin Arthritis Rheum. 2001 Aug;31(1):21–32. doi: 10.1053/sarh.2001.25482. [DOI] [PubMed] [Google Scholar]
  25. Michel C. M., Thut G., Morand S., Khateb A., Pegna A. J., Grave de Peralta R., Gonzalez S., Seeck M., Landis T. Electric source imaging of human brain functions. Brain Res Brain Res Rev. 2001 Oct;36(2-3):108–118. doi: 10.1016/s0165-0173(01)00086-8. [DOI] [PubMed] [Google Scholar]
  26. Monk Christopher S., Nelson Charles A. The effects of hydrocortisone on cognitive and neural function: a behavioral and event-related potential investigation. Neuropsychopharmacology. 2002 Apr;26(4):505–519. doi: 10.1016/S0893-133X(01)00384-0. [DOI] [PubMed] [Google Scholar]
  27. Nyberg Lars, Forkstam Christian, Petersson Karl Magnus, Cabeza Roberto, Ingvar Martin. Brain imaging of human memory systems: between-systems similarities and within-system differences. Brain Res Cogn Brain Res. 2002 Apr;13(2):281–292. doi: 10.1016/s0926-6410(02)00052-6. [DOI] [PubMed] [Google Scholar]
  28. Oldfield R. C. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971 Mar;9(1):97–113. doi: 10.1016/0028-3932(71)90067-4. [DOI] [PubMed] [Google Scholar]
  29. Papageorgiou C., Liappas I., Asvestas P., Vasios C., Matsopoulos G. K., Nikolaou C., Nikita K. S., Uzunoglu N., Rabavilas A. Abnormal P600 in heroin addicts with prolonged abstinence elicited during a working memory test. Neuroreport. 2001 Jun 13;12(8):1773–1778. doi: 10.1097/00001756-200106130-00051. [DOI] [PubMed] [Google Scholar]
  30. Pascual-Marqui R. D., Michel C. M., Lehmann D. Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Trans Biomed Eng. 1995 Jul;42(7):658–665. doi: 10.1109/10.391164. [DOI] [PubMed] [Google Scholar]
  31. Pelosi L., Geesken J. M., Holly M., Hayward M., Blumhardt L. D. Working memory impairment in early multiple sclerosis. Evidence from an event-related potential study of patients with clinically isolated myelopathy. Brain. 1997 Nov;120(Pt 11):2039–2058. doi: 10.1093/brain/120.11.2039. [DOI] [PubMed] [Google Scholar]
  32. Perry W., Heaton R. K., Potterat E., Roebuck T., Minassian A., Braff D. L. Working memory in schizophrenia: transient "online" storage versus executive functioning. Schizophr Bull. 2001;27(1):157–176. doi: 10.1093/oxfordjournals.schbul.a006854. [DOI] [PubMed] [Google Scholar]
  33. Poser C. M., Paty D. W., Scheinberg L., McDonald W. I., Davis F. A., Ebers G. C., Johnson K. P., Sibley W. A., Silberberg D. H., Tourtellotte W. W. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol. 1983 Mar;13(3):227–231. doi: 10.1002/ana.410130302. [DOI] [PubMed] [Google Scholar]
  34. Shelley A. M., Catts S. V., Ward P. B., Andrews S., Mitchell P., Michie P., McConaghy N. The effect of decreased catecholamine transmission on ERP indices of selective attention. Neuropsychopharmacology. 1997 Mar;16(3):202–210. doi: 10.1016/S0893-133X(96)00190-X. [DOI] [PubMed] [Google Scholar]
  35. Smolnik R., Perras B., Molle M., Fehm H. L., Born J. Event-related brain potentials and working memory function in healthy humans after single-dose and prolonged intranasal administration of adrenocorticotropin 4-10 and desacetyl-alpha-melanocyte stimulating hormone. J Clin Psychopharmacol. 2000 Aug;20(4):445–454. doi: 10.1097/00004714-200008000-00009. [DOI] [PubMed] [Google Scholar]
  36. Sperling R. A., Guttmann C. R., Hohol M. J., Warfield S. K., Jakab M., Parente M., Diamond E. L., Daffner K. R., Olek M. J., Orav E. J. Regional magnetic resonance imaging lesion burden and cognitive function in multiple sclerosis: a longitudinal study. Arch Neurol. 2001 Jan;58(1):115–121. doi: 10.1001/archneur.58.1.115. [DOI] [PubMed] [Google Scholar]
  37. Tuohy V. K., Yu M., Weinstock-Guttman B., Kinkel R. P. Diversity and plasticity of self recognition during the development of multiple sclerosis. J Clin Invest. 1997 Apr 1;99(7):1682–1690. doi: 10.1172/JCI119331. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES