Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2003 Sep;74(9):1272–1277. doi: 10.1136/jnnp.74.9.1272

CSF galanin and cognition after shunt surgery in normal pressure hydrocephalus

M Mataro 1, M Poca 1, Matarin M Del Mar 1, R Catalan 1, J Sahuquillo 1, R Galard 1
PMCID: PMC1738684  PMID: 12933934

Abstract

Background: "Normal" pressure hydrocephalus (NPH) is associated with injury to neurotransmitter and neuropeptide systems that recovers after surgery. This could be linked to changes in galanin, a neuropeptide with inhibitory effects on basal forebrain cognitive function.

Objective: To examine changes in CSF galanin concentrations in patients with normal pressure hydrocephalus undergoing shunt surgery, and to investigate the relation between these changes and cognitive functioning.

Methods: Eight patients underwent surgery for idiopathic normal pressure hydrocephalus. Lumbar CSF galanin determinations, cognitive status, and clinical status were quantified before operation and six months after. Cognition was assessed by an extensive battery of tests measuring attention, memory, speed of mental processing, visuospatial function, and frontal lobe function.

Results: CSF galanin concentration decreased after surgery. This reduction correlated with improved clinical and cognitive functioning, specifically with attention and visuomotor speed, visuoconstructive and frontal functioning, and clinical status according to the NPH scale, including the sphincter and cognitive components.

Conclusions: The cognitive and clinical improvement after shunt implantation correlated with CSF galanin levels, suggesting that the distribution or function of this agent involves cerebral structures that have some potential for recovery. In this study, galanin was related to several cognitive functions that may be associated with the fronto-subcortical deficits underlying cognitive dysfunction in normal pressure hydrocephalus.

Full Text

The Full Text of this article is available as a PDF (189.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADAMS R. D., FISHER C. M., HAKIM S., OJEMANN R. G., SWEET W. H. SYMPTOMATIC OCCULT HYDROCEPHALUS WITH "NORMAL" CEREBROSPINAL-FLUID PRESSURE.A TREATABLE SYNDROME. N Engl J Med. 1965 Jul 15;273:117–126. doi: 10.1056/NEJM196507152730301. [DOI] [PubMed] [Google Scholar]
  2. Alexander G. E., DeLong M. R., Strick P. L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–381. doi: 10.1146/annurev.ne.09.030186.002041. [DOI] [PubMed] [Google Scholar]
  3. Alom J., Galard R., Catalan R., Castellanos J. M., Schwartz S., Tolosa E. Cerebrospinal fluid neuropeptide Y in Alzheimer's disease. Eur Neurol. 1990;30(4):207–210. doi: 10.1159/000117347. [DOI] [PubMed] [Google Scholar]
  4. Beal M. F., MacGarvey U., Swartz K. J. Galanin immunoreactivity is increased in the nucleus basalis of Meynert in Alzheimer's disease. Ann Neurol. 1990 Aug;28(2):157–161. doi: 10.1002/ana.410280207. [DOI] [PubMed] [Google Scholar]
  5. Børgesen S. E. Conductance to outflow of CSF in normal pressure hydrocephalus. Acta Neurochir (Wien) 1984;71(1-2):1–45. doi: 10.1007/BF01401149. [DOI] [PubMed] [Google Scholar]
  6. Caltagirone C., Gainotti G., Masullo C., Villa G. Neurophysiological study of normal pressure hydrocephalus. Acta Psychiatr Scand. 1982 Feb;65(2):93–100. doi: 10.1111/j.1600-0447.1982.tb00827.x. [DOI] [PubMed] [Google Scholar]
  7. Catalan R., Sahuquillo J., Poca M. A., Molins A., Castellanos J. M., Galard R. Neuropeptide Y cerebrospinal fluid levels in patients with normal pressure hydrocephalus syndrome. Biol Psychiatry. 1994 Jul 1;36(1):61–63. doi: 10.1016/0006-3223(94)90064-7. [DOI] [PubMed] [Google Scholar]
  8. Chan-Palay V. Galanin hyperinnervates surviving neurons of the human basal nucleus of Meynert in dementias of Alzheimer's and Parkinson's disease: a hypothesis for the role of galanin in accentuating cholinergic dysfunction in dementia. J Comp Neurol. 1988 Jul 22;273(4):543–557. doi: 10.1002/cne.902730409. [DOI] [PubMed] [Google Scholar]
  9. Charlton B. G., Ferrier I. N., Perry R. H. Distribution of corticotropin-releasing factor-like immunoreactivity in human brain. Neuropeptides. 1987 Nov-Dec;10(4):329–334. doi: 10.1016/s0143-4179(87)90083-7. [DOI] [PubMed] [Google Scholar]
  10. Cramer H., Schaudt D., Rissler K., Strubel D., Warter J. M., Kuntzmann F. Somatostatin-like immunoreactivity and substance-P-like immunoreactivity in the CSF of patients with senile dementia of Alzheimer type, multi-infarct syndrome and communicating hydrocephalus. J Neurol. 1985;232(6):346–351. doi: 10.1007/BF00313833. [DOI] [PubMed] [Google Scholar]
  11. Crawley J. N. Minireview. Galanin-acetylcholine interactions: relevance to memory and Alzheimer's disease. Life Sci. 1996;58(24):2185–2199. doi: 10.1016/0024-3205(96)00093-8. [DOI] [PubMed] [Google Scholar]
  12. Crawley J. N., Wenk G. L. Co-existence of galanin and acetylcholine: is galanin involved in memory processes and dementia? Trends Neurosci. 1989 Aug;12(8):278–282. doi: 10.1016/0166-2236(89)90003-9. [DOI] [PubMed] [Google Scholar]
  13. Emson P. C., Fahrenkrug J., Spokes E. G. Vasoactive intestinal polypeptide (VIP): distribution in normal human brain and in Huntington's disease. Brain Res. 1979 Sep 7;173(1):174–178. doi: 10.1016/0006-8993(79)91109-0. [DOI] [PubMed] [Google Scholar]
  14. Epelbaum J. Somatostatin in the central nervous system: physiology and pathological modifications. Prog Neurobiol. 1986;27(1):63–100. doi: 10.1016/0301-0082(86)90012-2. [DOI] [PubMed] [Google Scholar]
  15. Gabriel S. M., Bierer L. M., Davidson M., Purohit D. P., Perl D. P., Harotunian V. Galanin-like immunoreactivity is increased in the postmortem cerebral cortex from patients with Alzheimer's disease. J Neurochem. 1994 Apr;62(4):1516–1523. doi: 10.1046/j.1471-4159.1994.62041516.x. [DOI] [PubMed] [Google Scholar]
  16. Gleason T. C., Dreiling J. L., Crawley J. N. Rat strain differences in response to galanin on the Morris water task. Neuropeptides. 1999 Aug;33(4):265–270. doi: 10.1054/npep.1999.0044. [DOI] [PubMed] [Google Scholar]
  17. Gray T. S., Morley J. E. Neuropeptide Y: anatomical distribution and possible function in mammalian nervous system. Life Sci. 1986 Feb 3;38(5):389–401. doi: 10.1016/0024-3205(86)90061-5. [DOI] [PubMed] [Google Scholar]
  18. Heilig M., Sjögren M., Blennow K., Ekman R., Wallin A. Cerebrospinal fluid neuropeptides in Alzheimer's disease and vascular dementia. Biol Psychiatry. 1995 Aug 15;38(4):210–216. doi: 10.1016/0006-3223(94)00239-Y. [DOI] [PubMed] [Google Scholar]
  19. Iddon J. L., Pickard J. D., Cross J. J., Griffiths P. D., Czosnyka M., Sahakian B. J. Specific patterns of cognitive impairment in patients with idiopathic normal pressure hydrocephalus and Alzheimer's disease: a pilot study. J Neurol Neurosurg Psychiatry. 1999 Dec;67(6):723–732. doi: 10.1136/jnnp.67.6.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Linn M. W., Linn B. S. The rapid disability rating scale-2. J Am Geriatr Soc. 1982 Jun;30(6):378–382. doi: 10.1111/j.1532-5415.1982.tb02835.x. [DOI] [PubMed] [Google Scholar]
  21. Malin D. H., Novy B. J., Lett-Brown A. E., Plotner R. E., May B. T., Radulescu S. J., Crothers M. K., Osgood L. D., Lake J. R. Galanin attenuates retention of one-trial reward learning. Life Sci. 1992;50(13):939–944. doi: 10.1016/0024-3205(92)90171-k. [DOI] [PubMed] [Google Scholar]
  22. Mastropaolo J., Nadi N. S., Ostrowski N. L., Crawley J. N. Galanin antagonizes acetylcholine on a memory task in basal forebrain-lesioned rats. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9841–9845. doi: 10.1073/pnas.85.24.9841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McDonald M. P., Crawley J. N. Galanin receptor antagonist M40 blocks galanin-induced choice accuracy deficits on a delayed-nonmatching-to-position task. Behav Neurosci. 1996 Oct;110(5):1025–1032. doi: 10.1037//0735-7044.110.5.1025. [DOI] [PubMed] [Google Scholar]
  24. McDonald M. P., Willard L. B., Wenk G. L., Crawley J. N. Coadministration of galanin antagonist M40 with a muscarinic M1 agonist improves delayed nonmatching to position choice accuracy in rats with cholinergic lesions. J Neurosci. 1998 Jul 1;18(13):5078–5085. doi: 10.1523/JNEUROSCI.18-13-05078.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Melander T., Hökfelt T., Rökaeus A. Distribution of galaninlike immunoreactivity in the rat central nervous system. J Comp Neurol. 1986 Jun 22;248(4):475–517. doi: 10.1002/cne.902480404. [DOI] [PubMed] [Google Scholar]
  26. Melander T., Staines W. A., Hökfelt T., Rökaeus A., Eckenstein F., Salvaterra P. M., Wainer B. H. Galanin-like immunoreactivity in cholinergic neurons of the septum-basal forebrain complex projecting to the hippocampus of the rat. Brain Res. 1985 Dec 23;360(1-2):130–138. doi: 10.1016/0006-8993(85)91228-4. [DOI] [PubMed] [Google Scholar]
  27. Miyamoto M., Kato J., Narumi S., Nagaoka A. Characteristics of memory impairment following lesioning of the basal forebrain and medial septal nucleus in rats. Brain Res. 1987 Sep 1;419(1-2):19–31. doi: 10.1016/0006-8993(87)90564-6. [DOI] [PubMed] [Google Scholar]
  28. Miyazawa T., Sato K. Learning disability and impairment of synaptogenesis in HTX-rats with arrested shunt-dependent hydrocephalus. Childs Nerv Syst. 1991 Jun;7(3):121–128. doi: 10.1007/BF00776706. [DOI] [PubMed] [Google Scholar]
  29. Molins A., Catalán R., Sahuquillo J., Castellanos J. M., Codina A., Galard R. Somatostatin cerebrospinal fluid levels in dementia. J Neurol. 1991 Jun;238(3):168–170. doi: 10.1007/BF00319684. [DOI] [PubMed] [Google Scholar]
  30. Mufson E. J., Cochran E., Benzing W., Kordower J. H. Galaninergic innervation of the cholinergic vertical limb of the diagonal band (Ch2) and bed nucleus of the stria terminalis in aging, Alzheimer's disease and Down's syndrome. Dementia. 1993 Sep-Oct;4(5):237–250. doi: 10.1159/000107329. [DOI] [PubMed] [Google Scholar]
  31. Ogren S. O., Kehr J., Schött P. A. Effects of ventral hippocampal galanin on spatial learning and on in vivo acetylcholine release in the rat. Neuroscience. 1996 Dec;75(4):1127–1140. doi: 10.1016/0306-4522(96)00215-1. [DOI] [PubMed] [Google Scholar]
  32. Pearce J. M. The life and work of Marshall Hall. QJM. 1997 Dec;90(12):801–803. doi: 10.1093/qjmed/90.12.801. [DOI] [PubMed] [Google Scholar]
  33. Poca M. A., Mataró M., Sahuquillo J., Catalán R., Ibañez J., Galard R. Shunt related changes in somatostatin, neuropeptide Y, and corticotropin releasing factor concentrations in patients with normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry. 2001 Mar;70(3):298–304. doi: 10.1136/jnnp.70.3.298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pérez S. E., Wynick D., Steiner R. A., Mufson E. J. Distribution of galaninergic immunoreactivity in the brain of the mouse. J Comp Neurol. 2001 May 28;434(2):158–185. doi: 10.1002/cne.1171. [DOI] [PubMed] [Google Scholar]
  35. Robinson J. K., Crawley J. N. Analysis of anatomical sites at which galanin impairs delayed nonmatching to sample in rats. Behav Neurosci. 1994 Oct;108(5):941–950. [PubMed] [Google Scholar]
  36. Robinson J. K., Crawley J. N. Intraventricular galanin impairs delayed nonmatching-to-sample performance in rats. Behav Neurosci. 1993 Jun;107(3):458–467. doi: 10.1037//0735-7044.107.3.458. [DOI] [PubMed] [Google Scholar]
  37. Sahuquillo J., Rubio E., Codina A., Molins A., Guitart J. M., Poca M. A., Chasampi A. Reappraisal of the intracranial pressure and cerebrospinal fluid dynamics in patients with the so-called "normal pressure hydrocephalus" syndrome. Acta Neurochir (Wien) 1991;112(1-2):50–61. doi: 10.1007/BF01402454. [DOI] [PubMed] [Google Scholar]
  38. Schött P. A., Bjelke B., Ogren S. O. Distribution and kinetics of galanin infused into the ventral hippocampus of the rat: relationship to spatial learning. Neuroscience. 1998 Mar;83(1):123–136. doi: 10.1016/s0306-4522(97)00360-6. [DOI] [PubMed] [Google Scholar]
  39. Skofitsch G., Jacobowitz D. M. Immunohistochemical mapping of galanin-like neurons in the rat central nervous system. Peptides. 1985 May-Jun;6(3):509–546. doi: 10.1016/0196-9781(85)90118-4. [DOI] [PubMed] [Google Scholar]
  40. Stambrook M., Cardoso E., Hawryluk G. A., Eirikson P., Piatek D., Sicz G. Neuropsychological changes following the neurosurgical treatment of normal pressure hydrocephalus. Arch Clin Neuropsychol. 1988;3(4):323–330. [PubMed] [Google Scholar]
  41. Sundström E., Archer T., Melander T., Hökfelt T. Galanin impairs acquisition but not retrieval of spatial memory in rats studied in the Morris swim maze. Neurosci Lett. 1988 Jun 7;88(3):331–335. doi: 10.1016/0304-3940(88)90233-9. [DOI] [PubMed] [Google Scholar]
  42. Tashiro Y., Drake J. M. Reversibility of functionally injured neurotransmitter systems with shunt placement in hydrocephalic rats: implications for intellectual impairment in hydrocephalus. J Neurosurg. 1998 Apr;88(4):709–717. doi: 10.3171/jns.1998.88.4.0709. [DOI] [PubMed] [Google Scholar]
  43. Tatemoto K., Rökaeus A., Jörnvall H., McDonald T. J., Mutt V. Galanin - a novel biologically active peptide from porcine intestine. FEBS Lett. 1983 Nov 28;164(1):124–128. doi: 10.1016/0014-5793(83)80033-7. [DOI] [PubMed] [Google Scholar]
  44. Ukai M., Miura M., Kameyama T. Effects of galanin on passive avoidance response, elevated plus-maze learning, and spontaneous alternation performance in mice. Peptides. 1995;16(7):1283–1286. doi: 10.1016/0196-9781(95)02009-l. [DOI] [PubMed] [Google Scholar]
  45. Wikkelsö C., Ekman R., Westergren I., Johansson B. Neuropeptides in cerebrospinal fluid in normal-pressure hydrocephalus and dementia. Eur Neurol. 1991;31(2):88–93. doi: 10.1159/000116653. [DOI] [PubMed] [Google Scholar]
  46. Wikkelsø C., Fahrenkrug J., Blomstrand C., Johansson B. B. Dementia of different etiologies: vasoactive intestinal polypeptide in CSF. Neurology. 1985 Apr;35(4):592–595. doi: 10.1212/wnl.35.4.592. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES