Abstract
Lipopolysaccharide (LPS) can induce mouse macrophages to produce a number of cytokines and other inflammatory mediators. Our laboratory previously reported that LPS-dependent macrophage-derived tumor necrosis factor alpha (TNF-alpha) production could be significantly potentiated by pretreatment with LPS at substimulatory LPS priming doses. The observed potentiation was shown to be coincident with a down-regulation of LPS-dependent nitric oxide (NO) production (X. Zhang and D. C. Morrison, J. Exp. Med. 177: 511-516, 1993). In order to determine whether these LPS reprogramming effects in mouse macrophages were selective for these two macrophage-derived mediators, we have examined the effects of LPS pretreatment on LPS-dependent interleukin 6 (IL-6) production. Thioglycolate-elicited mouse peritoneal macrophages were pretreated with various subthreshold stimulatory concentrations of LPS for 6 h, washed three times, and then stimulated with an effective stimulatory concentration of smooth LPS for 18 h. In confirmation of earlier studies, pretreatment of mouse macrophages with substimulatory doses of LPS inhibited the subsequent LPS-dependent NO production. This down-regulation was accompanied by a coordinate up-regulation of LPS-dependent IL-6 production, similar to what was shown earlier for TNF-alpha production. These priming effects with the substimulatory dose of smooth LPS are shown to be independent of doses of LPS used for subsequent activation and are not restricted to specific LPS stimulation. Moreover, the enhancement of the IL-6 response by LPS pretreatment is still observed in the presence of neutralizing antibody to TNF-alpha. These findings, therefore, provide further support for the conclusion that LPS-dependent macrophage reprogramming is likely to involve common regulatory pathways that control the secretion of both IL-6 and TNF-alpha.
Full Text
The Full Text of this article is available as a PDF (183.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Calandra T., Bernhagen J., Mitchell R. A., Bucala R. The macrophage is an important and previously unrecognized source of macrophage migration inhibitory factor. J Exp Med. 1994 Jun 1;179(6):1895–1902. doi: 10.1084/jem.179.6.1895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denizot F., Lang R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods. 1986 May 22;89(2):271–277. doi: 10.1016/0022-1759(86)90368-6. [DOI] [PubMed] [Google Scholar]
- Ding A. H., Nathan C. F., Stuehr D. J. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol. 1988 Oct 1;141(7):2407–2412. [PubMed] [Google Scholar]
- Drapier J. C., Wietzerbin J., Hibbs J. B., Jr Interferon-gamma and tumor necrosis factor induce the L-arginine-dependent cytotoxic effector mechanism in murine macrophages. Eur J Immunol. 1988 Oct;18(10):1587–1592. doi: 10.1002/eji.1830181018. [DOI] [PubMed] [Google Scholar]
- Fahmi H., Chaby R. Desensitization of macrophages to endotoxin effects is not correlated with a down-regulation of lipopolysaccharide-binding sites. Cell Immunol. 1993 Aug;150(1):219–229. doi: 10.1006/cimm.1993.1191. [DOI] [PubMed] [Google Scholar]
- Haas J. G., Baeuerle P. A., Riethmüller G., Ziegler-Heitbrock H. W. Molecular mechanisms in down-regulation of tumor necrosis factor expression. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9563–9567. doi: 10.1073/pnas.87.24.9563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jia F., Morrison D. C., Silverstein R. Hydrazine sulfate selectively modulates the TNF response to endotoxin in mouse macrophages. Circ Shock. 1994 Feb;42(2):111–114. [PubMed] [Google Scholar]
- Knopf H. P., Otto F., Engelhardt R., Freudenberg M. A., Galanos C., Herrmann F., Schumann R. R. Discordant adaptation of human peritoneal macrophages to stimulation by lipopolysaccharide and the synthetic lipid A analogue SDZ MRL 953. Down-regulation of TNF-alpha and IL-6 is paralleled by an up-regulation of IL-1 beta and granulocyte colony-stimulating factor expression. J Immunol. 1994 Jul 1;153(1):287–299. [PubMed] [Google Scholar]
- Kunkel S. L., Wiggins R. C., Chensue S. W., Larrick J. Regulation of macrophage tumor necrosis factor production by prostaglandin E2. Biochem Biophys Res Commun. 1986 May 29;137(1):404–410. doi: 10.1016/0006-291x(86)91224-6. [DOI] [PubMed] [Google Scholar]
- LaRue K. E., McCall C. E. A labile transcriptional repressor modulates endotoxin tolerance. J Exp Med. 1994 Dec 1;180(6):2269–2275. doi: 10.1084/jem.180.6.2269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li M. H., Seatter S. C., Manthei R., Bubrick M., West M. A. Macrophage endotoxin tolerance: effect of TNF or endotoxin pretreatment. J Surg Res. 1994 Jul;57(1):85–92. doi: 10.1006/jsre.1994.1115. [DOI] [PubMed] [Google Scholar]
- Mathison J. C., Virca G. D., Wolfson E., Tobias P. S., Glaser K., Ulevitch R. J. Adaptation to bacterial lipopolysaccharide controls lipopolysaccharide-induced tumor necrosis factor production in rabbit macrophages. J Clin Invest. 1990 Apr;85(4):1108–1118. doi: 10.1172/JCI114542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mathison J., Wolfson E., Steinemann S., Tobias P., Ulevitch R. Lipopolysaccharide (LPS) recognition in macrophages. Participation of LPS-binding protein and CD14 in LPS-induced adaptation in rabbit peritoneal exudate macrophages. J Clin Invest. 1993 Oct;92(4):2053–2059. doi: 10.1172/JCI116801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mengozzi M., Fantuzzi G., Sironi M., Bianchi M., Fratelli M., Peri G., Bernasconi S., Ghezzi P. Early down-regulation of TNF production by LPS tolerance in human monocytes: comparison with IL-1 beta, IL-6, and IL-8. Lymphokine Cytokine Res. 1993 Aug;12(4):231–236. [PubMed] [Google Scholar]
- Morrison D. C., Ryan J. L. Endotoxins and disease mechanisms. Annu Rev Med. 1987;38:417–432. doi: 10.1146/annurev.me.38.020187.002221. [DOI] [PubMed] [Google Scholar]
- Pabst M. J., Johnston R. B., Jr Increased production of superoxide anion by macrophages exposed in vitro to muramyl dipeptide or lipopolysaccharide. J Exp Med. 1980 Jan 1;151(1):101–114. doi: 10.1084/jem.151.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parmely M. J., Zhou W. W., Edwards C. K., 3rd, Borcherding D. R., Silverstein R., Morrison D. C. Adenosine and a related carbocyclic nucleoside analogue selectively inhibit tumor necrosis factor-alpha production and protect mice against endotoxin challenge. J Immunol. 1993 Jul 1;151(1):389–396. [PubMed] [Google Scholar]
- Renz H., Gong J. H., Schmidt A., Nain M., Gemsa D. Release of tumor necrosis factor-alpha from macrophages. Enhancement and suppression are dose-dependently regulated by prostaglandin E2 and cyclic nucleotides. J Immunol. 1988 Oct 1;141(7):2388–2393. [PubMed] [Google Scholar]
- Ruff M. R., Gifford G. E. Purification and physico-chemical characterization of rabbit tumor necrosis factor. J Immunol. 1980 Oct;125(4):1671–1677. [PubMed] [Google Scholar]
- Siegel S. A., Shealy D. J., Nakada M. T., Le J., Woulfe D. S., Probert L., Kollias G., Ghrayeb J., Vilcek J., Daddona P. E. The mouse/human chimeric monoclonal antibody cA2 neutralizes TNF in vitro and protects transgenic mice from cachexia and TNF lethality in vivo. Cytokine. 1995 Jan;7(1):15–25. doi: 10.1006/cyto.1995.1003. [DOI] [PubMed] [Google Scholar]
- Stuehr D. J., Nathan C. F. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med. 1989 May 1;169(5):1543–1555. doi: 10.1084/jem.169.5.1543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takasuka N., Tokunaga T., Akagawa K. S. Preexposure of macrophages to low doses of lipopolysaccharide inhibits the expression of tumor necrosis factor-alpha mRNA but not of IL-1 beta mRNA. J Immunol. 1991 Jun 1;146(11):3824–3830. [PubMed] [Google Scholar]
- Van Snick J., Cayphas S., Vink A., Uyttenhove C., Coulie P. G., Rubira M. R., Simpson R. J. Purification and NH2-terminal amino acid sequence of a T-cell-derived lymphokine with growth factor activity for B-cell hybridomas. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9679–9683. doi: 10.1073/pnas.83.24.9679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Virca G. D., Kim S. Y., Glaser K. B., Ulevitch R. J. Lipopolysaccharide induces hyporesponsiveness to its own action in RAW 264.7 cells. J Biol Chem. 1989 Dec 25;264(36):21951–21956. [PubMed] [Google Scholar]
- Zhang X., Alley E. W., Russell S. W., Morrison D. C. Necessity and sufficiency of beta interferon for nitric oxide production in mouse peritoneal macrophages. Infect Immun. 1994 Jan;62(1):33–40. doi: 10.1128/iai.62.1.33-40.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang X., Morrison D. C. Lipopolysaccharide structure-function relationship in activation versus reprogramming of mouse peritoneal macrophages. J Leukoc Biol. 1993 Nov;54(5):444–450. doi: 10.1002/jlb.54.5.444. [DOI] [PubMed] [Google Scholar]
- Zhang X., Morrison D. C. Lipopolysaccharide-induced selective priming effects on tumor necrosis factor alpha and nitric oxide production in mouse peritoneal macrophages. J Exp Med. 1993 Feb 1;177(2):511–516. doi: 10.1084/jem.177.2.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang X., Morrison D. C. Pertussis toxin-sensitive factor differentially regulates lipopolysaccharide-induced tumor necrosis factor-alpha and nitric oxide production in mouse peritoneal macrophages. J Immunol. 1993 Feb 1;150(3):1011–1018. [PubMed] [Google Scholar]
- Ziegler-Heitbrock H. W., Blumenstein M., Käfferlein E., Kieper D., Petersmann I., Endres S., Flegel W. A., Northoff H., Riethmüller G., Haas J. G. In vitro desensitization to lipopolysaccharide suppresses tumour necrosis factor, interleukin-1 and interleukin-6 gene expression in a similar fashion. Immunology. 1992 Feb;75(2):264–268. [PMC free article] [PubMed] [Google Scholar]