Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2004 Oct;75(10):1452–1456. doi: 10.1136/jnnp.2003.029819

Pontine atrophy precedes cerebellar degeneration in spinocerebellar ataxia 7: MRI-based volumetric analysis

O Bang 1, P Lee 1, S Kim 1, H Kim 1, K Huh 1
PMCID: PMC1738756  PMID: 15377695

Abstract

Background and objective: Spinocerebellar ataxia 7 (SCA7) is characterised by cerebellar ataxia and visual loss. The aim of the present study was to elucidate the magnetic resonance imaging (MRI) findings characteristic of patients with SCA7.

Methods: Twenty patients with SCA (eight SCA3, three SCA6, and nine SCA7) and 20 control subjects underwent an MRI-based volumetric analysis.

Results: The pontine volume in patients with SCA7 was decreased by a greater amount than in patients with other types of SCA (p<0.01), whereas the cerebellar volume was not different from that in other types of SCA (p>0.05). Pontine atrophy was a consistent finding in all patients with SCA7 regardless of the degree of cerebellar atrophy or the severity or duration of illness. In contrast, cerebellar atrophy was not found in those with a short duration of illness or mild ataxia, but became prominent as the severity and duration of illness progressed.

Conclusions: Our study suggests that neurodegeneration is ongoing during the life of individuals with SCA7, and that the primary pathology in these individuals involves the brainstem rather than the cerebellum. In addition, pontine atrophy is a prominent, consistent finding in SCA7, and may help in establishing the clinical diagnosis of SCA7.

Full Text

The Full Text of this article is available as a PDF (165.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe Y., Tanaka F., Matsumoto M., Doyu M., Hirayama M., Kachi T., Sobue G. CAG repeat number correlates with the rate of brainstem and cerebellar atrophy in Machado-Joseph disease. Neurology. 1998 Sep;51(3):882–884. doi: 10.1212/wnl.51.3.882. [DOI] [PubMed] [Google Scholar]
  2. Bürk K., Abele M., Fetter M., Dichgans J., Skalej M., Laccone F., Didierjean O., Brice A., Klockgether T. Autosomal dominant cerebellar ataxia type I clinical features and MRI in families with SCA1, SCA2 and SCA3. Brain. 1996 Oct;119(Pt 5):1497–1505. doi: 10.1093/brain/119.5.1497. [DOI] [PubMed] [Google Scholar]
  3. Cancel G., Duyckaerts C., Holmberg M., Zander C., Yvert G., Lebre A. S., Ruberg M., Faucheux B., Agid Y., Hirsch E. Distribution of ataxin-7 in normal human brain and retina. Brain. 2000 Dec;123(Pt 12):2519–2530. doi: 10.1093/brain/123.12.2519. [DOI] [PubMed] [Google Scholar]
  4. Coutinho P., Guimarães A., Scaravilli F. The pathology of Machado-Joseph disease. Report of a possible homozygous case. Acta Neuropathol. 1982;58(1):48–54. doi: 10.1007/BF00692697. [DOI] [PubMed] [Google Scholar]
  5. David G., Dürr A., Stevanin G., Cancel G., Abbas N., Benomar A., Belal S., Lebre A. S., Abada-Bendib M., Grid D. Molecular and clinical correlations in autosomal dominant cerebellar ataxia with progressive macular dystrophy (SCA7). Hum Mol Genet. 1998 Feb;7(2):165–170. doi: 10.1093/hmg/7.2.165. [DOI] [PubMed] [Google Scholar]
  6. Gilman S., Low P. A., Quinn N., Albanese A., Ben-Shlomo Y., Fowler C. J., Kaufmann H., Klockgether T., Lang A. E., Lantos P. L. Consensus statement on the diagnosis of multiple system atrophy. J Neurol Sci. 1999 Feb 1;163(1):94–98. doi: 10.1016/s0022-510x(98)00304-9. [DOI] [PubMed] [Google Scholar]
  7. Gouw L. G., Digre K. B., Harris C. P., Haines J. H., Ptacek L. J. Autosomal dominant cerebellar ataxia with retinal degeneration: clinical, neuropathologic, and genetic analysis of a large kindred. Neurology. 1994 Aug;44(8):1441–1447. doi: 10.1212/wnl.44.8.1441. [DOI] [PubMed] [Google Scholar]
  8. Holmberg M., Duyckaerts C., Dürr A., Cancel G., Gourfinkel-An I., Damier P., Faucheux B., Trottier Y., Hirsch E. C., Agid Y. Spinocerebellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal intranuclear inclusions. Hum Mol Genet. 1998 May;7(5):913–918. doi: 10.1093/hmg/7.5.913. [DOI] [PubMed] [Google Scholar]
  9. Ikeda K., Kubota S., Isashiki Y., Eiraku N., Osame M., Nakagawa M. Machado-Joseph disease with retinal degeneration and dementia. Acta Neurol Scand. 2001 Dec;104(6):402–405. doi: 10.1034/j.1600-0404.2001.00120.x. [DOI] [PubMed] [Google Scholar]
  10. Ishikawa K., Watanabe M., Yoshizawa K., Fujita T., Iwamoto H., Yoshizawa T., Harada K., Nakamagoe K., Komatsuzaki Y., Satoh A. Clinical, neuropathological, and molecular study in two families with spinocerebellar ataxia type 6 (SCA6). J Neurol Neurosurg Psychiatry. 1999 Jul;67(1):86–89. doi: 10.1136/jnnp.67.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ito Daisuke, Yamada Masakazu, Kawai Masataka, Usui Tomohiko, Hamada Junnich, Fukuuchi Yasuo. Corneal endothelial degeneration in dentatorubral-pallidoluysian atrophy. Arch Neurol. 2002 Feb;59(2):289–291. doi: 10.1001/archneur.59.2.289. [DOI] [PubMed] [Google Scholar]
  12. Johansson J., Forsgren L., Sandgren O., Brice A., Holmgren G., Holmberg M. Expanded CAG repeats in Swedish spinocerebellar ataxia type 7 (SCA7) patients: effect of CAG repeat length on the clinical manifestation. Hum Mol Genet. 1998 Feb;7(2):171–176. doi: 10.1093/hmg/7.2.171. [DOI] [PubMed] [Google Scholar]
  13. Kawaguchi Y., Okamoto T., Taniwaki M., Aizawa M., Inoue M., Katayama S., Kawakami H., Nakamura S., Nishimura M., Akiguchi I. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet. 1994 Nov;8(3):221–228. doi: 10.1038/ng1194-221. [DOI] [PubMed] [Google Scholar]
  14. Klockgether T., Skalej M., Wedekind D., Luft A. R., Welte D., Schulz J. B., Abele M., Bürk K., Laccone F., Brice A. Autosomal dominant cerebellar ataxia type I. MRI-based volumetry of posterior fossa structures and basal ganglia in spinocerebellar ataxia types 1, 2 and 3. Brain. 1998 Sep;121(Pt 9):1687–1693. doi: 10.1093/brain/121.9.1687. [DOI] [PubMed] [Google Scholar]
  15. Lawrence A. D., Hodges J. R., Rosser A. E., Kershaw A., ffrench-Constant C., Rubinsztein D. C., Robbins T. W., Sahakian B. J. Evidence for specific cognitive deficits in preclinical Huntington's disease. Brain. 1998 Jul;121(Pt 7):1329–1341. doi: 10.1093/brain/121.7.1329. [DOI] [PubMed] [Google Scholar]
  16. Lindenberg K. S., Yvert G., Müller K., Landwehrmeyer G. B. Expression analysis of ataxin-7 mRNA and protein in human brain: evidence for a widespread distribution and focal protein accumulation. Brain Pathol. 2000 Jul;10(3):385–394. doi: 10.1111/j.1750-3639.2000.tb00270.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Margolis R. L., Ross C. A. Expansion explosion: new clues to the pathogenesis of repeat expansion neurodegenerative diseases. Trends Mol Med. 2001 Nov;7(11):479–482. doi: 10.1016/s1471-4914(01)02179-7. [DOI] [PubMed] [Google Scholar]
  18. Martin J. J., Van Regemorter N., Krols L., Brucher J. M., de Barsy T., Szliwowski H., Evrard P., Ceuterick C., Tassignon M. J., Smet-Dieleman H. On an autosomal dominant form of retinal-cerebellar degeneration: an autopsy study of five patients in one family. Acta Neuropathol. 1994;88(4):277–286. doi: 10.1007/BF00310370. [DOI] [PubMed] [Google Scholar]
  19. Martin J., Van Regemorter N., Del-Favero J., Löfgren A., Van Broeckhoven C. Spinocerebellar ataxia type 7 (SCA7) - correlations between phenotype and genotype in one large Belgian family. J Neurol Sci. 1999 Sep 15;168(1):37–46. doi: 10.1016/s0022-510x(99)00176-8. [DOI] [PubMed] [Google Scholar]
  20. Murata Y., Kawakami H., Yamaguchi S., Nishimura M., Kohriyama T., Ishizaki F., Matsuyama Z., Mimori Y., Nakamura S. Characteristic magnetic resonance imaging findings in spinocerebellar ataxia 6. Arch Neurol. 1998 Oct;55(10):1348–1352. doi: 10.1001/archneur.55.10.1348. [DOI] [PubMed] [Google Scholar]
  21. Nakamura M., Nakano S., Goto Y., Ozawa M., Nagahama Y., Fukuyama H., Akiguchi I., Kaji R., Kimura J. A novel point mutation in the mitochondrial tRNA(Ser(UCN)) gene detected in a family with MERRF/MELAS overlap syndrome. Biochem Biophys Res Commun. 1995 Sep 5;214(1):86–93. doi: 10.1006/bbrc.1995.2260. [DOI] [PubMed] [Google Scholar]
  22. Oh A. K., Jacobson K. M., Jen J. C., Baloh R. W. Slowing of voluntary and involuntary saccades: an early sign in spinocerebellar ataxia type 7. Ann Neurol. 2001 Jun;49(6):801–804. doi: 10.1002/ana.1059. [DOI] [PubMed] [Google Scholar]
  23. Orr H. T., Chung M. Y., Banfi S., Kwiatkowski T. J., Jr, Servadio A., Beaudet A. L., McCall A. E., Duvick L. A., Ranum L. P., Zoghbi H. Y. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet. 1993 Jul;4(3):221–226. doi: 10.1038/ng0793-221. [DOI] [PubMed] [Google Scholar]
  24. Pulst S. M., Nechiporuk A., Nechiporuk T., Gispert S., Chen X. N., Lopes-Cendes I., Pearlman S., Starkman S., Orozco-Diaz G., Lunkes A. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet. 1996 Nov;14(3):269–276. doi: 10.1038/ng1196-269. [DOI] [PubMed] [Google Scholar]
  25. Sasaki H., Kojima H., Yabe I., Tashiro K., Hamada T., Sawa H., Hiraga H., Nagashima K. Neuropathological and molecular studies of spinocerebellar ataxia type 6 (SCA6). Acta Neuropathol. 1998 Feb;95(2):199–204. doi: 10.1007/s004010050787. [DOI] [PubMed] [Google Scholar]
  26. Sequeiros J., Coutinho P. Epidemiology and clinical aspects of Machado-Joseph disease. Adv Neurol. 1993;61:139–153. [PubMed] [Google Scholar]
  27. Soong B., Liu R., Wu L., Lu Y., Lee H. Metabolic characterization of spinocerebellar ataxia type 6. Arch Neurol. 2001 Feb;58(2):300–304. doi: 10.1001/archneur.58.2.300. [DOI] [PubMed] [Google Scholar]
  28. Sugawara M., Toyoshima I., Wada C., Kato K., Ishikawa K., Hirota K., Ishiguro H., Kagaya H., Hirata Y., Imota T. Pontine atrophy in spinocerebellar ataxia type 6. Eur Neurol. 2000;43(1):17–22. doi: 10.1159/000008123. [DOI] [PubMed] [Google Scholar]
  29. Wadia N., Pang J., Desai J., Mankodi A., Desai M., Chamberlain S. A clinicogenetic analysis of six Indian spinocerebellar ataxia (SCA2) pedigrees. The significance of slow saccades in diagnosis. Brain. 1998 Dec;121(Pt 12):2341–2355. doi: 10.1093/brain/121.12.2341. [DOI] [PubMed] [Google Scholar]
  30. Whitwell J. L., Crum W. R., Watt H. C., Fox N. C. Normalization of cerebral volumes by use of intracranial volume: implications for longitudinal quantitative MR imaging. AJNR Am J Neuroradiol. 2001 Sep;22(8):1483–1489. [PMC free article] [PubMed] [Google Scholar]
  31. Yoneda M., Tanno Y., Nonaka I., Miyatake T., Tsuji S. Simple detection of tRNA(Lys) mutation in myoclonus epilepsy associated with ragged-red fibers (MERRF) by polymerase chain reaction with a mismatched primer. Neurology. 1991 Nov;41(11):1838–1840. doi: 10.1212/wnl.41.11.1838. [DOI] [PubMed] [Google Scholar]
  32. Zhuchenko O., Bailey J., Bonnen P., Ashizawa T., Stockton D. W., Amos C., Dobyns W. B., Subramony S. H., Zoghbi H. Y., Lee C. C. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet. 1997 Jan;15(1):62–69. doi: 10.1038/ng0197-62. [DOI] [PubMed] [Google Scholar]
  33. de la Monte S. M., Vonsattel J. P., Richardson E. P., Jr Morphometric demonstration of atrophic changes in the cerebral cortex, white matter, and neostriatum in Huntington's disease. J Neuropathol Exp Neurol. 1988 Sep;47(5):516–525. doi: 10.1097/00005072-198809000-00003. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES