Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2004 Dec;75(12):1692–1696. doi: 10.1136/jnnp.2003.022756

Apolipoprotein E genotypes do not influence the age of onset in Huntington's disease

C Saft 1, J Andrich 1, N Brune 1, M Gencik 1, P Kraus 1, H Przuntek 1, J Epplen 1
PMCID: PMC1738834  PMID: 15548484

Abstract

Objective: The ε4 allele of the apolipoprotein E (ApoE) gene has been defined as a critical factor for early onset neurodegeneration in Pick's, Parkinson's, and Alzheimer's disease. Unexpectedly, the ε4 allele appeared to delay the age of onset in Huntington's disease (HD) patients. Furthermore, sex specific effects were reported on earlier age of onset due to the ApoE ε2ε3 genotype in males with HD. The age of onset of HD is known to be negatively correlated with increasing lengths of pathogenetic CAG expansions in the huntingtin gene.

Methods: In order to examine the effects of CAG block lengths, we have correlated ApoE genotypes with the age of onset in 145 patients symptomatic for HD with psychiatric and somatic symptoms (depression, psychosis, dementia, choreic, and other movement disorders) harbouring only modestly expanded huntingtin alleles (41–45 CAGs).

Results: The negative correlation between age of onset and CAG block length was established in our HD cohort. Statistically significant effects of the ε4 allele were not obvious regarding clinical characteristics including age of onset, nor were any sex differences for the ε2ε3 genotype observed.

Conclusion: The ApoE genotype does not affect the course of HD significantly.

Full Text

The Full Text of this article is available as a PDF (114.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrew S. E., Goldberg Y. P., Kremer B., Telenius H., Theilmann J., Adam S., Starr E., Squitieri F., Lin B., Kalchman M. A. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nat Genet. 1993 Aug;4(4):398–403. doi: 10.1038/ng0893-398. [DOI] [PubMed] [Google Scholar]
  2. Clarke G., Collins R. A., Leavitt B. R., Andrews D. F., Hayden M. R., Lumsden C. J., McInnes R. R. A one-hit model of cell death in inherited neuronal degenerations. Nature. 2000 Jul 13;406(6792):195–199. doi: 10.1038/35018098. [DOI] [PubMed] [Google Scholar]
  3. Corbo R. M., Scacchi R. Apolipoprotein E (APOE) allele distribution in the world. Is APOE*4 a 'thrifty' allele? Ann Hum Genet. 1999 Jul;63(Pt 4):301–310. doi: 10.1046/j.1469-1809.1999.6340301.x. [DOI] [PubMed] [Google Scholar]
  4. Corder E. H., Saunders A. M., Strittmatter W. J., Schmechel D. E., Gaskell P. C., Small G. W., Roses A. D., Haines J. L., Pericak-Vance M. A. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science. 1993 Aug 13;261(5123):921–923. doi: 10.1126/science.8346443. [DOI] [PubMed] [Google Scholar]
  5. Feigin Andrew, Zgaljardic Dennis. Recent advances in Huntington's disease: implications for experimental therapeutics. Curr Opin Neurol. 2002 Aug;15(4):483–489. doi: 10.1097/00019052-200208000-00013. [DOI] [PubMed] [Google Scholar]
  6. Kehoe P., Krawczak M., Harper P. S., Owen M. J., Jones A. L. Age of onset in Huntington disease: sex specific influence of apolipoprotein E genotype and normal CAG repeat length. J Med Genet. 1999 Feb;36(2):108–111. [PMC free article] [PubMed] [Google Scholar]
  7. Krüger R., Vieira-Saecker A. M., Kuhn W., Berg D., Müller T., Kühnl N., Fuchs G. A., Storch A., Hungs M., Woitalla D. Increased susceptibility to sporadic Parkinson's disease by a certain combined alpha-synuclein/apolipoprotein E genotype. Ann Neurol. 1999 May;45(5):611–617. doi: 10.1002/1531-8249(199905)45:5<611::aid-ana9>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
  8. Kálmán J., Juhász A., Majtényi K., Rimanóczy A., Jakab K., Gárdián G., Raskó I., Janka Z. Apolipoprotein E polymorphism in Pick's disease and in Huntington's disease. Neurobiol Aging. 2000 Jul-Aug;21(4):555–558. doi: 10.1016/s0197-4580(00)00150-0. [DOI] [PubMed] [Google Scholar]
  9. Leroi I., Michalon M. Treatment of the psychiatric manifestations of Huntington's disease: a review of the literature. Can J Psychiatry. 1998 Nov;43(9):933–940. doi: 10.1177/070674379804300909. [DOI] [PubMed] [Google Scholar]
  10. Mahley R. W., Huang Y. Apolipoprotein E: from atherosclerosis to Alzheimer's disease and beyond. Curr Opin Lipidol. 1999 Jun;10(3):207–217. doi: 10.1097/00041433-199906000-00003. [DOI] [PubMed] [Google Scholar]
  11. Mahley R. W., Rall S. C., Jr Apolipoprotein E: far more than a lipid transport protein. Annu Rev Genomics Hum Genet. 2000;1:507–537. doi: 10.1146/annurev.genom.1.1.507. [DOI] [PubMed] [Google Scholar]
  12. Panas M., Avramopoulos D., Karadima G., Petersen M. B., Vassilopoulos D. Apolipoprotein E and presenilin-1 genotypes in Huntington's disease. J Neurol. 1999 Jul;246(7):574–577. doi: 10.1007/s004150050406. [DOI] [PubMed] [Google Scholar]
  13. Paulsen J. S., Zhao H., Stout J. C., Brinkman R. R., Guttman M., Ross C. A., Como P., Manning C., Hayden M. R., Shoulson I. Clinical markers of early disease in persons near onset of Huntington's disease. Neurology. 2001 Aug 28;57(4):658–662. doi: 10.1212/wnl.57.4.658. [DOI] [PubMed] [Google Scholar]
  14. Perutz M. F., Windle A. H. Cause of neural death in neurodegenerative diseases attributable to expansion of glutamine repeats. Nature. 2001 Jul 12;412(6843):143–144. doi: 10.1038/35084141. [DOI] [PubMed] [Google Scholar]
  15. Riess O., Noerremoelle A., Soerensen S. A., Epplen J. T. Improved PCR conditions for the stretch of (CAG)n repeats causing Huntington's disease. Hum Mol Genet. 1993 Jun;2(6):637–637. doi: 10.1093/hmg/2.6.637. [DOI] [PubMed] [Google Scholar]
  16. Rubinsztein D. C., Leggo J., Chiano M., Dodge A., Norbury G., Rosser E., Craufurd D. Genotypes at the GluR6 kainate receptor locus are associated with variation in the age of onset of Huntington disease. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3872–3876. doi: 10.1073/pnas.94.8.3872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rubinsztein D. C., Leggo J., Coles R., Almqvist E., Biancalana V., Cassiman J. J., Chotai K., Connarty M., Crauford D., Curtis A. Phenotypic characterization of individuals with 30-40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36-39 repeats. Am J Hum Genet. 1996 Jul;59(1):16–22. [PMC free article] [PubMed] [Google Scholar]
  18. Saft Carsten, Andrich Jürgen, Meisel Nina-Marie, Przuntek Horst, Müller Thomas. Assessment of complex movements reflects dysfunction in Huntington's disease. J Neurol. 2003 Dec;250(12):1469–1474. doi: 10.1007/s00415-003-0256-4. [DOI] [PubMed] [Google Scholar]
  19. Snell R. G., MacMillan J. C., Cheadle J. P., Fenton I., Lazarou L. P., Davies P., MacDonald M. E., Gusella J. F., Harper P. S., Shaw D. J. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease. Nat Genet. 1993 Aug;4(4):393–397. doi: 10.1038/ng0893-393. [DOI] [PubMed] [Google Scholar]
  20. Strittmatter W. J., Saunders A. M., Schmechel D., Pericak-Vance M., Enghild J., Salvesen G. S., Roses A. D. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1977–1981. doi: 10.1073/pnas.90.5.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Warner J. P., Barron L. H., Brock D. J. A new polymerase chain reaction (PCR) assay for the trinucleotide repeat that is unstable and expanded on Huntington's disease chromosomes. Mol Cell Probes. 1993 Jun;7(3):235–239. doi: 10.1006/mcpr.1993.1034. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES