Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2004 Feb;75(2):256–261.

The use of evoked potentials for clinical correlation and surgical outcome in cervical spondylotic myelopathy with intramedullary high signal intensity on MRI

R Lyu 1, L Tang 1, C Chen 1, C Chen 1, H Chang 1, Y Wu 1
PMCID: PMC1738907  PMID: 14742600

Abstract

Objective: To investigate the use of motor evoked potentials (MEPs) and somatosensory evoked potentials (SEPs) for clinical significance and surgical outcome in patients with cervical spondylotic myelopathy (CSM) with intramedullary high signal intensity on T2 weighted MRI.

Methods: Forty nine patients were scored according to the modified Japanese Orthopaedic Association (JOA) score for cervical myelopathy. MEP and SEP studies were performed and the results were categorised as normal or abnormal. Thirty nine patients who had received surgical decompression were re-evaluated after 6 months. Surgical outcome was represented by the recovery ratio of the JOA score.

Results: Abnormal MEPs were observed in 44 patients (arm: 43; leg: 30). Abnormal SEPs were found in 32 patients: (median: 24; tibial: 23). Patients with abnormal SEPs had a worse JOA score than those with normal SEPs. Thirty nine patients received surgical treatment. Patients younger than 55 had better recovery ratios than those who were 55 or older (p = 0.005, two sample Student's t test). Patients with normal median SEPs also had better recovery ratios than those with abnormal median SEPs (p = 0.007, two sample Student's t test). Among median SEP variables, only N9-20 was significantly associated with recovery ratio (p = 0.016, stepwise linear regression), with age factor controlled (p = 0.025, stepwise linear regression).

Conclusion: Arm MEP was the most sensitive EP test for detecting myelopathy in patients with chronic CSM. Median and tibial SEPs correlated well with the severity of myelopathy while normal median SEPs correlated with good surgical outcome. Among median SEP variables, only N9-20 correlated with surgical outcome.

Full Text

The Full Text of this article is available as a PDF (249.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen C. J., Lyu R. K., Lee S. T., Wong Y. C., Wang L. J. Intramedullary high signal intensity on T2-weighted MR images in cervical spondylotic myelopathy: prediction of prognosis with type of intensity. Radiology. 2001 Dec;221(3):789–794. doi: 10.1148/radiol.2213010365. [DOI] [PubMed] [Google Scholar]
  2. Di Lazzaro V., Restuccia D., Colosimo C., Tonali P. The contribution of magnetic stimulation of the motor cortex to the diagnosis of cervical spondylotic myelopathy. Correlation of central motor conduction to distal and proximal upper limb muscles with clinical and MRI findings. Electroencephalogr Clin Neurophysiol. 1992 Oct;85(5):311–320. doi: 10.1016/0168-5597(92)90107-m. [DOI] [PubMed] [Google Scholar]
  3. Eidelberg E., Straehley D., Erspamer R., Watkins C. J. Relationship between residual hindlimb-assisted locomotion and surviving axons after incomplete spinal cord injuries. Exp Neurol. 1977 Aug;56(2):312–322. doi: 10.1016/0014-4886(77)90350-8. [DOI] [PubMed] [Google Scholar]
  4. Ganes T. Somatosensory conduction times and peripheral, cervical and cortical evoked potentials in patients with cervical spondylosis. J Neurol Neurosurg Psychiatry. 1980 Aug;43(8):683–689. doi: 10.1136/jnnp.43.8.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hirabayashi K., Miyakawa J., Satomi K., Maruyama T., Wakano K. Operative results and postoperative progression of ossification among patients with ossification of cervical posterior longitudinal ligament. Spine (Phila Pa 1976) 1981 Jul-Aug;6(4):354–364. doi: 10.1097/00007632-198107000-00005. [DOI] [PubMed] [Google Scholar]
  6. Jaskolski D. J., Jarratt J. A., Jakubowski J. Clinical evaluation of magnetic stimulation in cervical spondylosis. Br J Neurosurg. 1989;3(5):541–548. doi: 10.3109/02688698909002845. [DOI] [PubMed] [Google Scholar]
  7. Kameyama O., Shibano K., Kawakita H., Ogawa R. Transcranial magnetic stimulation of the motor cortex in cervical spondylosis and spinal canal stenosis. Spine (Phila Pa 1976) 1995 May 1;20(9):1004–1010. doi: 10.1097/00007632-199505000-00006. [DOI] [PubMed] [Google Scholar]
  8. Kelkar P., Ross M. A., Yamada T. Isolated posterior column dysfunction: an unusual presentation of spondylotic myelopathy. J Spinal Disord. 2000 Aug;13(4):356–359. doi: 10.1097/00002517-200008000-00014. [DOI] [PubMed] [Google Scholar]
  9. LEES F., TURNER J. W. NATURAL HISTORY AND PROGNOSIS OF CERVICAL SPONDYLOSIS. Br Med J. 1963 Dec 28;2(5373):1607–1610. doi: 10.1136/bmj.2.5373.1607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Maertens de Noordhout A., Remacle J. M., Pepin J. L., Born J. D., Delwaide P. J. Magnetic stimulation of the motor cortex in cervical spondylosis. Neurology. 1991 Jan;41(1):75–80. doi: 10.1212/wnl.41.1.75. [DOI] [PubMed] [Google Scholar]
  11. Masur H., Elger C. E., Render K., Fahrendorf G., Ludolph A. C. Functional deficits of central sensory and motor pathways in patients with cervical spinal stenosis: a study of SEPs and EMG responses to non-invasive brain stimulation. Electroencephalogr Clin Neurophysiol. 1989 Nov-Dec;74(6):450–457. doi: 10.1016/0168-5597(89)90035-x. [DOI] [PubMed] [Google Scholar]
  12. Mehalic T. F., Pezzuti R. T., Applebaum B. I. Magnetic resonance imaging and cervical spondylotic myelopathy. Neurosurgery. 1990 Feb;26(2):217–227. doi: 10.1097/00006123-199002000-00006. [DOI] [PubMed] [Google Scholar]
  13. Naderi S., Ozgen S., Pamir M. N., Ozek M. M., Erzen C. Cervical spondylotic myelopathy: surgical results and factors affecting prognosis. Neurosurgery. 1998 Jul;43(1):43–50. doi: 10.1097/00006123-199807000-00028. [DOI] [PubMed] [Google Scholar]
  14. Nashmi R., Fehlings M. G. Changes in axonal physiology and morphology after chronic compressive injury of the rat thoracic spinal cord. Neuroscience. 2001;104(1):235–251. doi: 10.1016/s0306-4522(01)00009-4. [DOI] [PubMed] [Google Scholar]
  15. Nurick S. The pathogenesis of the spinal cord disorder associated with cervical spondylosis. Brain. 1972;95(1):87–100. doi: 10.1093/brain/95.1.87. [DOI] [PubMed] [Google Scholar]
  16. Perlik S. J., Fisher M. A. Somatosensory evoked response evaluation of cervical spondylytic myelopathy. Muscle Nerve. 1987 Jul-Aug;10(6):481–489. doi: 10.1002/mus.880100602. [DOI] [PubMed] [Google Scholar]
  17. Restuccia D., Di Lazzaro V., Valeriani M., Aulisa L., Galli M., Tonali P., Mauguière F. The role of upper limb somatosensory evoked potentials in the management of cervical spondylotic myelopathy: preliminary data. Electroencephalogr Clin Neurophysiol. 1994 Nov;92(6):502–509. doi: 10.1016/0168-5597(94)90134-1. [DOI] [PubMed] [Google Scholar]
  18. Restuccia D., Di Lazzaro V., Valeriani M., Tonali P., Mauguière F. Segmental dysfunction of the cervical cord revealed by abnormalities of the spinal N13 potential in cervical spondylotic myelopathy. Neurology. 1992 May;42(5):1054–1063. doi: 10.1212/wnl.42.5.1054. [DOI] [PubMed] [Google Scholar]
  19. Takahashi M., Sakamoto Y., Miyawaki M., Bussaka H. Increased MR signal intensity secondary to chronic cervical cord compression. Neuroradiology. 1987;29(6):550–556. doi: 10.1007/BF00350439. [DOI] [PubMed] [Google Scholar]
  20. Takahashi M., Yamashita Y., Sakamoto Y., Kojima R. Chronic cervical cord compression: clinical significance of increased signal intensity on MR images. Radiology. 1989 Oct;173(1):219–224. doi: 10.1148/radiology.173.1.2781011. [DOI] [PubMed] [Google Scholar]
  21. Tavy D. L., Wagner G. L., Keunen R. W., Wattendorff A. R., Hekster R. E., Franssen H. Transcranial magnetic stimulation in patients with cervical spondylotic myelopathy: clinical and radiological correlations. Muscle Nerve. 1994 Feb;17(2):235–241. doi: 10.1002/mus.880170215. [DOI] [PubMed] [Google Scholar]
  22. Thompson P. D., Dick J. P., Asselman P., Griffin G. B., Day B. L., Rothwell J. C., Sheehy M. P., Marsden C. D. Examination of motor function in lesions of the spinal cord by stimulation of the motor cortex. Ann Neurol. 1987 Apr;21(4):389–396. doi: 10.1002/ana.410210412. [DOI] [PubMed] [Google Scholar]
  23. Veilleux M., Daube J. R. The value of ulnar somatosensory evoked potentials (SEPs) in cervical myelopathy. Electroencephalogr Clin Neurophysiol. 1987 Nov;68(6):415–423. doi: 10.1016/0168-5597(87)90053-0. [DOI] [PubMed] [Google Scholar]
  24. Wada E., Ohmura M., Yonenobu K. Intramedullary changes of the spinal cord in cervical spondylotic myelopathy. Spine (Phila Pa 1976) 1995 Oct 15;20(20):2226–2232. doi: 10.1097/00007632-199510001-00009. [DOI] [PubMed] [Google Scholar]
  25. Yonenobu K., Okada K., Fuji T., Fujiwara K., Yamashita K., Ono K. Causes of neurologic deterioration following surgical treatment of cervical myelopathy. Spine (Phila Pa 1976) 1986 Oct;11(8):818–823. doi: 10.1097/00007632-198610000-00016. [DOI] [PubMed] [Google Scholar]
  26. Yu Y. L., Jones S. J. Somatosensory evoked potentials in cervical spondylosis. Correlation of median, ulnar and posterior tibial nerve responses with clinical and radiological findings. Brain. 1985 Jun;108(Pt 2):273–300. doi: 10.1093/brain/108.2.273. [DOI] [PubMed] [Google Scholar]
  27. de Noordhout A. M., Myressiotis S., Delvaux V., Born J. D., Delwaide P. J. Motor and somatosensory evoked potentials in cervical spondylotic myelopathy. Electroencephalogr Clin Neurophysiol. 1998 Jan;108(1):24–31. doi: 10.1016/s0168-5597(97)00075-0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES