Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Apr;64(4):1133–1139. doi: 10.1128/iai.64.4.1133-1139.1996

Delineation by use of specific monoclonal antibodies of the T-cell receptor and major histocompatibility complex interaction sites on the superantigen toxic shock syndrome toxin 1.

R Shimonkevitz 1, E Boen 1, S Malmstrom 1, E Brown 1, J M Hurley 1, B L Kotzin 1, M Matsumura 1
PMCID: PMC173894  PMID: 8606069

Abstract

Murine monoclonal antibodies (MAbs) specific for toxic shock syndrome toxin 1 (TSST-1), a bacterial superantigen, showed the ability either to detect TSST-1 bound to histocompatibility locus antigen (HLA)-DR molecules or to inhibit TSST-1 binding to HLA-DR. A MAb capable of detecting DR-bound TSST-1 could also inhibit the toxin-induced activation of a T-cell receptor Vbeta15-expressing murine T-cell hybridoma. Alternatively, MAbs with specificity for the HLA-DR association site could present TSST-1 in vitro, stimulating CD4+ human T cells to proliferate. These functional activities correlated directly with with MAb specificity for HLA-DR versus T-cell receptor Vbeta interaction sites on TSST-1 as determined by reactivity with a panel of recombinant TSST-1 mutant molecules. Therefore, these MAbs discriminate the superantigen functional sites on the TSST-1 molecule and constitute reagents with the property of being potent modulators of the toxic activity of TSST-1.

Full Text

The Full Text of this article is available as a PDF (262.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe J., Kotzin B. L., Meissner C., Melish M. E., Takahashi M., Fulton D., Romagne F., Malissen B., Leung D. Y. Characterization of T cell repertoire changes in acute Kawasaki disease. J Exp Med. 1993 Mar 1;177(3):791–796. doi: 10.1084/jem.177.3.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Acharya K. R., Passalacqua E. F., Jones E. Y., Harlos K., Stuart D. I., Brehm R. D., Tranter H. S. Structural basis of superantigen action inferred from crystal structure of toxic-shock syndrome toxin-1. Nature. 1994 Jan 6;367(6458):94–97. doi: 10.1038/367094a0. [DOI] [PubMed] [Google Scholar]
  3. Blanco L., Choi E. M., Connolly K., Thompson M. R., Bonventre P. F. Mutants of staphylococcal toxic shock syndrome toxin 1: mitogenicity and recognition by a neutralizing monoclonal antibody. Infect Immun. 1990 Sep;58(9):3020–3028. doi: 10.1128/iai.58.9.3020-3028.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blomster-Hautamaa D. A., Novick R. P., Schlievert P. M. Localization of biologic functions of toxic shock syndrome toxin-1 by use of monoclonal antibodies and cyanogen bromide-generated toxin fragments. J Immunol. 1986 Dec 1;137(11):3572–3576. [PubMed] [Google Scholar]
  5. Bohach G. A., Fast D. J., Nelson R. D., Schlievert P. M. Staphylococcal and streptococcal pyrogenic toxins involved in toxic shock syndrome and related illnesses. Crit Rev Microbiol. 1990;17(4):251–272. doi: 10.3109/10408419009105728. [DOI] [PubMed] [Google Scholar]
  6. Bonventre P. F., Heeg H., Cullen C., Lian C. J. Toxicity of recombinant toxic shock syndrome toxin 1 and mutant toxins produced by Staphylococcus aureus in a rabbit infection model of toxic shock syndrome. Infect Immun. 1993 Mar;61(3):793–799. doi: 10.1128/iai.61.3.793-799.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bonventre P. F., Thompson M. R., Adinolfi L. E., Gillis Z. A., Parsonnet J. Neutralization of toxic shock syndrome toxin-1 by monoclonal antibodies in vitro and in vivo. Infect Immun. 1988 Jan;56(1):135–141. doi: 10.1128/iai.56.1.135-141.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chapes S. K., Hoynowski S. M., Woods K. M., Armstrong J. W., Beharka A. A., Iandolo J. J. Staphylococcus-mediated T-cell activation and spontaneous natural killer cell activity in the absence of major histocompatibility complex class II molecules. Infect Immun. 1993 Sep;61(9):4013–4016. doi: 10.1128/iai.61.9.4013-4016.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Choi Y., Kappler J. W., Marrack P. A superantigen encoded in the open reading frame of the 3' long terminal repeat of mouse mammary tumour virus. Nature. 1991 Mar 21;350(6315):203–207. doi: 10.1038/350203a0. [DOI] [PubMed] [Google Scholar]
  10. Deresiewicz R. L., Woo J., Chan M., Finberg R. W., Kasper D. L. Mutations affecting the activity of toxic shock syndrome toxin-1. Biochemistry. 1994 Nov 1;33(43):12844–12851. doi: 10.1021/bi00209a016. [DOI] [PubMed] [Google Scholar]
  11. Hamad A. R., Herman A., Marrack P., Kappler J. W. Monoclonal antibodies defining functional sites on the toxin superantigen staphylococcal enterotoxin B. J Exp Med. 1994 Aug 1;180(2):615–621. doi: 10.1084/jem.180.2.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hurley J. M., Shimonkevitz R., Hanagan A., Enney K., Boen E., Malmstrom S., Kotzin B. L., Matsumura M. Identification of class II major histocompatibility complex and T cell receptor binding sites in the superantigen toxic shock syndrome toxin 1. J Exp Med. 1995 Jun 1;181(6):2229–2235. doi: 10.1084/jem.181.6.2229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kappler J. W., Herman A., Clements J., Marrack P. Mutations defining functional regions of the superantigen staphylococcal enterotoxin B. J Exp Med. 1992 Feb 1;175(2):387–396. doi: 10.1084/jem.175.2.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kappler J. W., Skidmore B., White J., Marrack P. Antigen-inducible, H-2-restricted, interleukin-2-producing T cell hybridomas. Lack of independent antigen and H-2 recognition. J Exp Med. 1981 May 1;153(5):1198–1214. doi: 10.1084/jem.153.5.1198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kim J., Urban R. G., Strominger J. L., Wiley D. C. Toxic shock syndrome toxin-1 complexed with a class II major histocompatibility molecule HLA-DR1. Science. 1994 Dec 16;266(5192):1870–1874. doi: 10.1126/science.7997880. [DOI] [PubMed] [Google Scholar]
  16. Kokan-Moore N. P., Bergdoll M. S. Determination of biologically active region in toxic shock syndrome toxin 1. Rev Infect Dis. 1989 Jan-Feb;11 (Suppl 1):S125–S129. [PubMed] [Google Scholar]
  17. Kotzin B. L., Leung D. Y., Kappler J., Marrack P. Superantigens and their potential role in human disease. Adv Immunol. 1993;54:99–166. doi: 10.1016/s0065-2776(08)60534-9. [DOI] [PubMed] [Google Scholar]
  18. Landegren U. Measurement of cell numbers by means of the endogenous enzyme hexosaminidase. Applications to detection of lymphokines and cell surface antigens. J Immunol Methods. 1984 Mar 16;67(2):379–388. doi: 10.1016/0022-1759(84)90477-0. [DOI] [PubMed] [Google Scholar]
  19. Leung D. Y., Giorno R. C., Kazemi L. V., Flynn P. A., Busse J. B. Evidence for superantigen involvement in cardiovascular injury due to Kawasaki syndrome. J Immunol. 1995 Nov 15;155(10):5018–5021. [PubMed] [Google Scholar]
  20. Leung D. Y., Meissner H. C., Fulton D. R., Murray D. L., Kotzin B. L., Schlievert P. M. Toxic shock syndrome toxin-secreting Staphylococcus aureus in Kawasaki syndrome. Lancet. 1993 Dec 4;342(8884):1385–1388. doi: 10.1016/0140-6736(93)92752-f. [DOI] [PubMed] [Google Scholar]
  21. Murray D. L., Prasad G. S., Earhart C. A., Leonard B. A., Kreiswirth B. N., Novick R. P., Ohlendorf D. H., Schlievert P. M. Immunobiologic and biochemical properties of mutants of toxic shock syndrome toxin-1. J Immunol. 1994 Jan 1;152(1):87–95. [PubMed] [Google Scholar]
  22. Pietra B. A., De Inocencio J., Giannini E. H., Hirsch R. TCR V beta family repertoire and T cell activation markers in Kawasaki disease. J Immunol. 1994 Aug 15;153(4):1881–1888. [PubMed] [Google Scholar]
  23. Prasad G. S., Earhart C. A., Murray D. L., Novick R. P., Schlievert P. M., Ohlendorf D. H. Structure of toxic shock syndrome toxin 1. Biochemistry. 1993 Dec 21;32(50):13761–13766. doi: 10.1021/bi00213a001. [DOI] [PubMed] [Google Scholar]
  24. Todd J. K. Toxic shock syndrome. Clin Microbiol Rev. 1988 Oct;1(4):432–446. doi: 10.1128/cmr.1.4.432. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES