Abstract
Objective: To apply the lesion method to assess neuroanatomical substrates for judgments of forearm orientation from proprioceptive cues in humans.
Methods: Participants were 15 subjects with chronic unilateral brain lesions and stable behavioural deficits, and 14 neurologically normal controls. Subjects aligned the forearm to earth fixed vertical and trunk fixed anterior-posterior (A-P) axes ("straight ahead"), with the head aligned to the trunk and with head and shoulder orientations varied on each trial.
Results: Most subjects with posterior parietal lobe lesions made larger variable errors than controls in aligning the forearm to the earth fixed vertical axis and the trunk A-P axes, whether the head was held upright or oriented in different positions. Lesion subjects and controls made similar constant errors for aligning the forearm to gravitational vertical. Variable error magnitude correlated positively with greater lesion volume of right and left superior parietal lobules (SPL), but not with lesions in other brain areas. Larger variable errors for aligning the forearm to the trunk fixed A-P axis were also correlated with the volume of SPL lesions, but constant error magnitude correlated with larger volume lesions in premotor areas, inferior parietal lobules, and posterior regions of the superior temporal gyri, but not with SPL lesion volume.
Conclusions: The findings suggest that the right and left superior and inferior parietal lobules, posterior superior temporal gyri, and premotor areas play a role in defining higher level coordinate systems for specifying orientation of the right and left forearm.
Full Text
The Full Text of this article is available as a PDF (322.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akbarian S., Berndl K., Grüsser O. J., Guldin W., Pause M., Schreiter U. Responses of single neurons in the parietoinsular vestibular cortex of primates. Ann N Y Acad Sci. 1988;545:187–202. doi: 10.1111/j.1749-6632.1988.tb19564.x. [DOI] [PubMed] [Google Scholar]
- Binkofski F., Buccino G., Posse S., Seitz R. J., Rizzolatti G., Freund H. A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study. Eur J Neurosci. 1999 Sep;11(9):3276–3286. doi: 10.1046/j.1460-9568.1999.00753.x. [DOI] [PubMed] [Google Scholar]
- Brandt T., Dieterich M., Danek A. Vestibular cortex lesions affect the perception of verticality. Ann Neurol. 1994 Apr;35(4):403–412. doi: 10.1002/ana.410350406. [DOI] [PubMed] [Google Scholar]
- Bucher S. F., Dieterich M., Wiesmann M., Weiss A., Zink R., Yousry T. A., Brandt T. Cerebral functional magnetic resonance imaging of vestibular, auditory, and nociceptive areas during galvanic stimulation. Ann Neurol. 1998 Jul;44(1):120–125. doi: 10.1002/ana.410440118. [DOI] [PubMed] [Google Scholar]
- Bullock-Saxton J. E., Wong W. J., Hogan N. The influence of age on weight-bearing joint reposition sense of the knee. Exp Brain Res. 2001 Feb;136(3):400–406. doi: 10.1007/s002210000595. [DOI] [PubMed] [Google Scholar]
- Chokron S., Bartolomeo P. Position of the egocentric reference and directional arm movements in right-brain-damaged patients. Brain Cogn. 1998 Aug;37(3):405–418. doi: 10.1006/brcg.1998.1005. [DOI] [PubMed] [Google Scholar]
- Damasio H., Frank R. Three-dimensional in vivo mapping of brain lesions in humans. Arch Neurol. 1992 Feb;49(2):137–143. doi: 10.1001/archneur.1992.00530260037016. [DOI] [PubMed] [Google Scholar]
- Darling W. G., Butler A. J., Williams T. E. Visual perceptions of head-fixed and trunk-fixed anterior/posterior axes. Exp Brain Res. 1996 Nov;112(1):127–134. doi: 10.1007/BF00227186. [DOI] [PubMed] [Google Scholar]
- Darling W. G., Hondzinski J. M. Kinesthetic perceptions of earth- and body-fixed axes. Exp Brain Res. 1999 Jun;126(3):417–430. doi: 10.1007/s002210050748. [DOI] [PubMed] [Google Scholar]
- Darling W. G., Hondzinski J. M. Visual perceptions of vertical and intrinsic longitudinal axes. Exp Brain Res. 1997 Oct;116(3):485–492. doi: 10.1007/pl00005776. [DOI] [PubMed] [Google Scholar]
- Darling W. G., Williams T. E. Kinesthetic perceptions of intrinsic anterior-posterior axes. Exp Brain Res. 1997 Dec;117(3):465–471. doi: 10.1007/s002210050242. [DOI] [PubMed] [Google Scholar]
- Darling Warren G., Pizzimenti Marc A., Rizzo Matthew. Unilateral posterior parietal lobe lesions affect representation of visual space. Vision Res. 2003 Jul;43(15):1675–1688. doi: 10.1016/s0042-6989(03)00179-2. [DOI] [PubMed] [Google Scholar]
- Farnè A., Ponti F., Làdavas E. In search of biased egocentric reference frames in neglect. Neuropsychologia. 1998 Jul;36(7):611–623. doi: 10.1016/s0028-3932(97)00164-4. [DOI] [PubMed] [Google Scholar]
- Galati G., Lobel E., Vallar G., Berthoz A., Pizzamiglio L., Le Bihan D. The neural basis of egocentric and allocentric coding of space in humans: a functional magnetic resonance study. Exp Brain Res. 2000 Jul;133(2):156–164. doi: 10.1007/s002210000375. [DOI] [PubMed] [Google Scholar]
- Ghez C., Gordon J., Ghilardi M. F. Impairments of reaching movements in patients without proprioception. II. Effects of visual information on accuracy. J Neurophysiol. 1995 Jan;73(1):361–372. doi: 10.1152/jn.1995.73.1.361. [DOI] [PubMed] [Google Scholar]
- Gordon J., Ghilardi M. F., Ghez C. Impairments of reaching movements in patients without proprioception. I. Spatial errors. J Neurophysiol. 1995 Jan;73(1):347–360. doi: 10.1152/jn.1995.73.1.347. [DOI] [PubMed] [Google Scholar]
- Heilman K. M., Bowers D., Watson R. T. Performance on hemispatial pointing task by patients with neglect syndrome. Neurology. 1983 May;33(5):661–664. doi: 10.1212/wnl.33.5.661. [DOI] [PubMed] [Google Scholar]
- Karnath H. O., Ferber S., Himmelbach M. Spatial awareness is a function of the temporal not the posterior parietal lobe. Nature. 2001 Jun 21;411(6840):950–953. doi: 10.1038/35082075. [DOI] [PubMed] [Google Scholar]
- Karnath H. O. Subjective body orientation in neglect and the interactive contribution of neck muscle proprioception and vestibular stimulation. Brain. 1994 Oct;117(Pt 5):1001–1012. doi: 10.1093/brain/117.5.1001. [DOI] [PubMed] [Google Scholar]
- Lobel E., Kleine J. F., Bihan D. L., Leroy-Willig A., Berthoz A. Functional MRI of galvanic vestibular stimulation. J Neurophysiol. 1998 Nov;80(5):2699–2709. doi: 10.1152/jn.1998.80.5.2699. [DOI] [PubMed] [Google Scholar]
- Mittelstaedt H. Evidence of somatic graviception from new and classical investigations. Acta Otolaryngol Suppl. 1995;520(Pt 1):186–187. doi: 10.3109/00016489509125224. [DOI] [PubMed] [Google Scholar]
- Mittelstaedt H. Somatic graviception. Biol Psychol. 1996 Jan 5;42(1-2):53–74. doi: 10.1016/0301-0511(95)05146-5. [DOI] [PubMed] [Google Scholar]
- Pai Y. C., Rymer W. Z., Chang R. W., Sharma L. Effect of age and osteoarthritis on knee proprioception. Arthritis Rheum. 1997 Dec;40(12):2260–2265. doi: 10.1002/art.1780401223. [DOI] [PubMed] [Google Scholar]
- Schweigart Georg, Chien Rey-Djin, Mergner Thomas. Neck proprioception compensates for age-related deterioration of vestibular self-motion perception. Exp Brain Res. 2002 Sep 18;147(1):89–97. doi: 10.1007/s00221-002-1218-2. [DOI] [PubMed] [Google Scholar]
- Soechting J. F., Flanders M. Errors in pointing are due to approximations in sensorimotor transformations. J Neurophysiol. 1989 Aug;62(2):595–608. doi: 10.1152/jn.1989.62.2.595. [DOI] [PubMed] [Google Scholar]
- Soechting J. F., Flanders M. Sensorimotor representations for pointing to targets in three-dimensional space. J Neurophysiol. 1989 Aug;62(2):582–594. doi: 10.1152/jn.1989.62.2.582. [DOI] [PubMed] [Google Scholar]
- Vallar G., Lobel E., Galati G., Berthoz A., Pizzamiglio L., Le Bihan D. A fronto-parietal system for computing the egocentric spatial frame of reference in humans. Exp Brain Res. 1999 Feb;124(3):281–286. doi: 10.1007/s002210050624. [DOI] [PubMed] [Google Scholar]
- Worringham C. J., Stelmach G. E. The contribution of gravitational torques to limb position sense. Exp Brain Res. 1985;61(1):38–42. doi: 10.1007/BF00235618. [DOI] [PubMed] [Google Scholar]