Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2004 Aug;75(8):1107–1111. doi: 10.1136/jnnp.2003.019422

Increased intrathecal inflammatory activity in frontotemporal dementia: pathophysiological implications

M Sjogren 1, S Folkesson 1, K Blennow 1, E Tarkowski 1
PMCID: PMC1739153  PMID: 15258209

Abstract

Objective: Immunological mechanisms may be part of the pathophysiological mechanisms in frontotemporal dementia (FTD), but hitherto only vague evidence of such mechanisms has been presented. The aim of this study was to compare the cerebrospinal fluid (CSF) levels of the pro-inflammatory cytokines interleukin (IL)-1ß and tumour necrosis factor (TNF)-α, and the anti-inflammatory cytokine transforming growth factor (TGF)-ß in patients with FTD and normal controls. Furthermore, serum levels of TNF-α, TGF-ß, and IL-1ß were measured in FTD patients.

Methods: The CSF levels of IL-1ß, TNFα, and TGF-ß were measured using ELISA in 19 patients with FTD and 24 sex and age matched healthy controls.

Results: The CSF levels of TNF-α (FTD 0.6 pg/mL (median: lower, upper quartile 0.3, 0.7); controls: 0.0 pg/mL (0.0, 0.0); p = 0.008) and TGF-ß (FTD 266 pg/mL (157, 371), controls: 147 pg/mL (119, 156); p = 0.0001) were significantly increased in FTD patients compared with controls. No correlations were found between CSF and serum levels of the cytokines. In the controls, but not in the FTD patients, a positive correlation was found between the CSF levels of TGF-ß and age (r = 0.42, p<0.05). No correlation was found between any of the cytokines and degree of brain atrophy or white matter changes. No differences between the groups were found for age, gender, or CSF/serum albumin ratio.

Conclusions: The results suggest an increased intrathecal production of both pro- and anti-inflammatory cytokines in FTD. As no correlations were found with the albumin ratio, and no correlations between CSF and serum levels of the cytokines were found, these changes in the CSF cannot be explained by a systemic overproduction of cytokines.

Full Text

The Full Text of this article is available as a PDF (88.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barger S. W., Hörster D., Furukawa K., Goodman Y., Krieglstein J., Mattson M. P. Tumor necrosis factors alpha and beta protect neurons against amyloid beta-peptide toxicity: evidence for involvement of a kappa B-binding factor and attenuation of peroxide and Ca2+ accumulation. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9328–9332. doi: 10.1073/pnas.92.20.9328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benveniste E. N., Tang L. P., Law R. M. Differential regulation of astrocyte TNF-alpha expression by the cytokines TGF-beta, IL-6 and IL-10. Int J Dev Neurosci. 1995 Jun-Jul;13(3-4):341–349. doi: 10.1016/0736-5748(94)00061-7. [DOI] [PubMed] [Google Scholar]
  3. Breitner J. C. Inflammatory processes and antiinflammatory drugs in Alzheimer's disease: a current appraisal. Neurobiol Aging. 1996 Sep-Oct;17(5):789–794. doi: 10.1016/0197-4580(96)00109-1. [DOI] [PubMed] [Google Scholar]
  4. Brun A. Frontal lobe degeneration of non-Alzheimer type revisited. Dementia. 1993 May-Aug;4(3-4):126–131. doi: 10.1159/000107311. [DOI] [PubMed] [Google Scholar]
  5. Brun A., Passant U. Frontal lobe degeneration of non-Alzheimer type. Structural characteristics, diagnostic criteria and relation to other frontotemporal dementias. Acta Neurol Scand Suppl. 1996;168:28–30. [PubMed] [Google Scholar]
  6. Cooper P. N., Siddons C. A., Mann D. M. Patterns of glial cell activity in fronto-temporal dementia (lobar atrophy). Neuropathol Appl Neurobiol. 1996 Feb;22(1):17–22. [PubMed] [Google Scholar]
  7. Dahlström A., McRae A., Polinsky R., Nee L., Sadasivan B., Ling E. A. Alzheimer's disease cerebrospinal fluid antibodies display selectivity for microglia. Investigations with cell cultures and human cortical biopsies. Mol Neurobiol. 1994 Aug-Dec;9(1-3):41–54. doi: 10.1007/BF02816104. [DOI] [PubMed] [Google Scholar]
  8. Fabre S. F., Forsell C., Viitanen M., Sjögren M., Wallin A., Blennow K., Blomberg M., Andersen C., Wahlund L. O., Lannfelt L. Clinic-based cases with frontotemporal dementia show increased cerebrospinal fluid tau and high apolipoprotein E epsilon4 frequency, but no tau gene mutations. Exp Neurol. 2001 Apr;168(2):413–418. doi: 10.1006/exnr.2000.7613. [DOI] [PubMed] [Google Scholar]
  9. Fabre S. F., Forsell C., Viitanen M., Sjögren M., Wallin A., Blennow K., Blomberg M., Andersen C., Wahlund L. O., Lannfelt L. Clinic-based cases with frontotemporal dementia show increased cerebrospinal fluid tau and high apolipoprotein E epsilon4 frequency, but no tau gene mutations. Exp Neurol. 2001 Apr;168(2):413–418. doi: 10.1006/exnr.2000.7613. [DOI] [PubMed] [Google Scholar]
  10. Gowing E., Roher A. E., Woods A. S., Cotter R. J., Chaney M., Little S. P., Ball M. J. Chemical characterization of A beta 17-42 peptide, a component of diffuse amyloid deposits of Alzheimer disease. J Biol Chem. 1994 Apr 15;269(15):10987–10990. [PubMed] [Google Scholar]
  11. Green A. J., Harvey R. J., Thompson E. J., Rossor M. N. Increased tau in the cerebrospinal fluid of patients with frontotemporal dementia and Alzheimer's disease. Neurosci Lett. 1999 Jan 8;259(2):133–135. doi: 10.1016/s0304-3940(98)00904-5. [DOI] [PubMed] [Google Scholar]
  12. Gustafson L. Clinical picture of frontal lobe degeneration of non-Alzheimer type. Dementia. 1993 May-Aug;4(3-4):143–148. doi: 10.1159/000107313. [DOI] [PubMed] [Google Scholar]
  13. Houlden H., Baker M., Adamson J., Grover A., Waring S., Dickson D., Lynch T., Boeve B., Petersen R. C., Pickering-Brown S. Frequency of tau mutations in three series of non-Alzheimer's degenerative dementia. Ann Neurol. 1999 Aug;46(2):243–248. doi: 10.1002/1531-8249(199908)46:2<243::aid-ana14>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
  14. Hutton M., Lendon C. L., Rizzu P., Baker M., Froelich S., Houlden H., Pickering-Brown S., Chakraverty S., Isaacs A., Grover A. Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17. Nature. 1998 Jun 18;393(6686):702–705. doi: 10.1038/31508. [DOI] [PubMed] [Google Scholar]
  15. Hüll M., Strauss S., Berger M., Volk B., Bauer J. The participation of interleukin-6, a stress-inducible cytokine, in the pathogenesis of Alzheimer's disease. Behav Brain Res. 1996 Jun;78(1):37–41. doi: 10.1016/0166-4328(95)00213-8. [DOI] [PubMed] [Google Scholar]
  16. Knopman D. S. Overview of dementia lacking distinctive histology: pathological designation of a progressive dementia. Dementia. 1993 May-Aug;4(3-4):132–136. doi: 10.1159/000107354. [DOI] [PubMed] [Google Scholar]
  17. Marcinkowski T. The diseases of Alzheimer and Pick from the viewpoint of prevention. Med Hypotheses. 1996 Mar;46(3):180–182. doi: 10.1016/s0306-9877(96)90240-6. [DOI] [PubMed] [Google Scholar]
  18. Martin J. A., Craft D. K., Su J. H., Kim R. C., Cotman C. W. Astrocytes degenerate in frontotemporal dementia: possible relation to hypoperfusion. Neurobiol Aging. 2001 Mar-Apr;22(2):195–207. doi: 10.1016/s0197-4580(00)00231-1. [DOI] [PubMed] [Google Scholar]
  19. Mecocci P., Cherubini A., Bregnocchi M., Chionne F., Cecchetti R., Lowenthal D. T., Senin U. Tau protein in cerebrospinal fluid: a new diagnostic and prognostic marker in Alzheimer disease? Alzheimer Dis Assoc Disord. 1998 Sep;12(3):211–214. doi: 10.1097/00002093-199809000-00015. [DOI] [PubMed] [Google Scholar]
  20. Neary D., Snowden J. S., Gustafson L., Passant U., Stuss D., Black S., Freedman M., Kertesz A., Robert P. H., Albert M. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998 Dec;51(6):1546–1554. doi: 10.1212/wnl.51.6.1546. [DOI] [PubMed] [Google Scholar]
  21. Neary D., Snowden J. Fronto-temporal dementia: nosology, neuropsychology, and neuropathology. Brain Cogn. 1996 Jul;31(2):176–187. doi: 10.1006/brcg.1996.0041. [DOI] [PubMed] [Google Scholar]
  22. Odawara Toshinari, Iseki Eizo, Kanai Akiko, Arai Tetsuaki, Katsuragi Toshio, Hino Hiroaki, Furukawa Yoshiko, Kato Masanori, Yamamoto Takayuki, Kosaka Kenji. Clinicopathological study of two subtypes of Pick's disease in Japan. Dement Geriatr Cogn Disord. 2003;15(1):19–25. doi: 10.1159/000066674. [DOI] [PubMed] [Google Scholar]
  23. Pasinetti G. M. Inflammatory mechanisms in neurodegeneration and Alzheimer's disease: the role of the complement system. Neurobiol Aging. 1996 Sep-Oct;17(5):707–716. doi: 10.1016/0197-4580(96)00113-3. [DOI] [PubMed] [Google Scholar]
  24. Pratt B. M., McPherson J. M. TGF-beta in the central nervous system: potential roles in ischemic injury and neurodegenerative diseases. Cytokine Growth Factor Rev. 1997 Dec;8(4):267–292. doi: 10.1016/s1359-6101(97)00018-x. [DOI] [PubMed] [Google Scholar]
  25. Righi M., Mori L., De Libero G., Sironi M., Biondi A., Mantovani A., Donini S. D., Ricciardi-Castagnoli P. Monokine production by microglial cell clones. Eur J Immunol. 1989 Aug;19(8):1443–1448. doi: 10.1002/eji.1830190815. [DOI] [PubMed] [Google Scholar]
  26. Sjögren M., Blomberg M., Jonsson M., Wahlund L. O., Edman A., Lind K., Rosengren L., Blennow K., Wallin A. Neurofilament protein in cerebrospinal fluid: a marker of white matter changes. J Neurosci Res. 2001 Nov 1;66(3):510–516. doi: 10.1002/jnr.1242. [DOI] [PubMed] [Google Scholar]
  27. Sjögren M., Davidsson P., Tullberg M., Minthon L., Wallin A., Wikkelso C., Granérus A. K., Vanderstichele H., Vanmechelen E., Blennow K. Both total and phosphorylated tau are increased in Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2001 May;70(5):624–630. doi: 10.1136/jnnp.70.5.624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sjögren M., Minthon L., Davidsson P., Granérus A-K, Clarberg A., Vanderstichele H., Vanmechelen E., Wallin A., Blennow K. CSF levels of tau, beta-amyloid(1-42) and GAP-43 in frontotemporal dementia, other types of dementia and normal aging. J Neural Transm (Vienna) 2000;107(5):563–579. doi: 10.1007/s007020070079. [DOI] [PubMed] [Google Scholar]
  29. Sjögren M., Rosengren L., Minthon L., Davidsson P., Blennow K., Wallin A. Cytoskeleton proteins in CSF distinguish frontotemporal dementia from AD. Neurology. 2000 May 23;54(10):1960–1964. doi: 10.1212/wnl.54.10.1960. [DOI] [PubMed] [Google Scholar]
  30. Sjögren M., Wallin A., Edman A. Symptomatological characteristics distinguish between frontotemporal dementia and vascular dementia with a dominant frontal lobe syndrome. Int J Geriatr Psychiatry. 1997 Jun;12(6):656–661. [PubMed] [Google Scholar]
  31. Sjögren M., Wallin A. Pathophysiological aspects of frontotemporal dementia--emphasis on cytoskeleton proteins and autoimmunity. Mech Ageing Dev. 2001 Nov;122(16):1923–1935. doi: 10.1016/s0047-6374(01)00303-7. [DOI] [PubMed] [Google Scholar]
  32. Su J. H., Nichol K. E., Sitch T., Sheu P., Chubb C., Miller B. L., Tomaselli K. J., Kim R. C., Cotman C. W. DNA damage and activated caspase-3 expression in neurons and astrocytes: evidence for apoptosis in frontotemporal dementia. Exp Neurol. 2000 May;163(1):9–19. doi: 10.1006/exnr.2000.7340. [DOI] [PubMed] [Google Scholar]
  33. Suzumura A., Sawada M., Yamamoto H., Marunouchi T. Transforming growth factor-beta suppresses activation and proliferation of microglia in vitro. J Immunol. 1993 Aug 15;151(4):2150–2158. [PubMed] [Google Scholar]
  34. Tarkowski E., Blennow K., Wallin A., Tarkowski A. Intracerebral production of tumor necrosis factor-alpha, a local neuroprotective agent, in Alzheimer disease and vascular dementia. J Clin Immunol. 1999 Jul;19(4):223–230. doi: 10.1023/a:1020568013953. [DOI] [PubMed] [Google Scholar]
  35. Tarkowski E., Liljeroth A. M., Nilsson A, Minthon L., Blennow K. Decreased levels of intrathecal interleukin 1 receptor antagonist in Alzheimer's disease. Dement Geriatr Cogn Disord. 2001 Sep-Oct;12(5):314–317. doi: 10.1159/000051276. [DOI] [PubMed] [Google Scholar]
  36. Tarkowski E., Rosengren L., Blomstrand C., Wikkelsö C., Jensen C., Ekholm S., Tarkowski A. Intrathecal release of pro- and anti-inflammatory cytokines during stroke. Clin Exp Immunol. 1997 Dec;110(3):492–499. doi: 10.1046/j.1365-2249.1997.4621483.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tarkowski Elisabeth, Issa Razao, Sjögren Magnus, Wallin Anders, Blennow Kaj, Tarkowski Andrej, Kumar Pat. Increased intrathecal levels of the angiogenic factors VEGF and TGF-beta in Alzheimer's disease and vascular dementia. Neurobiol Aging. 2002 Mar-Apr;23(2):237–243. doi: 10.1016/s0197-4580(01)00285-8. [DOI] [PubMed] [Google Scholar]
  38. Tracey K. J., Cerami A. Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Annu Rev Med. 1994;45:491–503. doi: 10.1146/annurev.med.45.1.491. [DOI] [PubMed] [Google Scholar]
  39. Velazquez P., Cribbs D. H., Poulos T. L., Tenner A. J. Aspartate residue 7 in amyloid beta-protein is critical for classical complement pathway activation: implications for Alzheimer's disease pathogenesis. Nat Med. 1997 Jan;3(1):77–79. doi: 10.1038/nm0197-77. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES