Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Apr;64(4):1335–1341. doi: 10.1128/iai.64.4.1335-1341.1996

Identification and analysis of fipA, a Fusobacterium nucleatum immunosuppressive factor gene.

D R Demuth 1, R Savary 1, E Golub 1, B J Shenker 1
PMCID: PMC173923  PMID: 8606098

Abstract

We have previously demonstrated that sonic extracts of Fusobacterium nucleatum FDC 364 were capable of inhibiting human T-cell responses to mitogens and antigens. The purified F. nucleatum immunosuppressive protein (FIP) is composed of two subunits of 44 and 48 kDa. Furthermore, FIP inhibits T-cell activation by arresting cells in the middle of the G(1) phase of the cell cycle; the data available to date suggest that FIP impairs the expression of the proliferating-cell nuclear antigen. To initiate delineation of FIP structure-function relationships, molecular cloning of the FIP gene was carried out. A DNA library of F. nucleatum FDC 364 was constructed by partial digestion of genomic DNA with Sau3A and screened for the production of FIP with polyclonal antibody. Twelve immunoreactive clones were identified. One of these clones contained a 3.1-kbp insert and was chosen for further study. Cell lysates were found to contain an immunoreactive band that comigrated with the 44-kDa subcomponent of the native FIP. Sequencing of the 3.1-kpb insert revealed the presence of three open reading frames (ORFs). One ORF extends from nucleotides 415 to 1620, encodes 402 amino acids, and is preceded by a ribosome-binding site. Deletion analysis and antibody elution analysis showed that this ORF encodes the 44-kDa subunit (FipA) of native FIP. A second ORF is situated upstream of fipA. However, Northern (RNA) analysis suggested that fipA is not transcribed as part of an operon but transcribed from its own promotor. Finally, the partially purified recombinant FipA protein was capable of impairing T-cell activation in a manner consistent with the native protein. These results indicate that the two components that form the native protein are most probably distinct gene products and suggest that the 44-kDa FipA polypeptide is sufficient to mediate the immunosuppressive activities of the native protein complex.

Full Text

The Full Text of this article is available as a PDF (353.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker J. J., Wright W. E., Chan S. P., Oppenheim J. J. Longitudinal effects of clinical therapy and the edentulous state on the transformation of lymphocytes from patients with severe periodontitis. Clin Exp Immunol. 1978 Nov;34(2):199–205. [PMC free article] [PubMed] [Google Scholar]
  2. Brook I. Anaerobic bacteria in pediatric infections. Am Fam Physician. 1981 Mar;23(3):201–204. [PubMed] [Google Scholar]
  3. Chou P. Y., Fasman G. D. Prediction of protein conformation. Biochemistry. 1974 Jan 15;13(2):222–245. doi: 10.1021/bi00699a002. [DOI] [PubMed] [Google Scholar]
  4. Doty S. L., Lopatin D. E., Syed S. A., Smith F. N. Humoral immune response to oral microorganisms in periodontitis. Infect Immun. 1982 Aug;37(2):499–505. doi: 10.1128/iai.37.2.499-505.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Edson R. S., Rosenblatt J. E., Washington J. A., 2nd, Stewart J. B. Gas-liquid chromatography of positive blood cultures for rapid presumptive diagnosis of anaerobic bacteremia. J Clin Microbiol. 1982 Jun;15(6):1059–1061. doi: 10.1128/jcm.15.6.1059-1061.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eisenberg D., Weiss R. M., Terwilliger T. C. The hydrophobic moment detects periodicity in protein hydrophobicity. Proc Natl Acad Sci U S A. 1984 Jan;81(1):140–144. doi: 10.1073/pnas.81.1.140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eisenberg D., Wilcox W., McLachlan A. D. Hydrophobicity and amphiphilicity in protein structure. J Cell Biochem. 1986;31(1):11–17. doi: 10.1002/jcb.240310103. [DOI] [PubMed] [Google Scholar]
  8. Ito Y., Kishishita M., Yanase S. Induction of Epstein-Barr virus antigens in human lymphoblastoid P3HR-1 cells with culture fluid of Fusobacterium nucleatum. Cancer Res. 1980 Nov;40(11):4329–4330. [PubMed] [Google Scholar]
  9. Ivanyi L., Topic B., Lydyard P. M. The role of TG lymphocytes in cell-mediated immunity in patients with periodontal disease. Clin Exp Immunol. 1981 Dec;46(3):633–639. [PMC free article] [PubMed] [Google Scholar]
  10. Kuhn L. A., Leigh J. S., Jr A statistical technique for predicting membrane protein structure. Biochim Biophys Acta. 1985 Apr 29;828(3):351–361. doi: 10.1016/0167-4838(85)90316-4. [DOI] [PubMed] [Google Scholar]
  11. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  12. Lally E. T., Kieba I. R., Demuth D. R., Rosenbloom J., Golub E. E., Taichman N. S., Gibson C. W. Identification and expression of the Actinobacillus actinomycetemcomitans leukotoxin gene. Biochem Biophys Res Commun. 1989 Feb 28;159(1):256–262. doi: 10.1016/0006-291x(89)92431-5. [DOI] [PubMed] [Google Scholar]
  13. Lehner T., Wilton J. M., Ivanyi L., Manson J. D. Immunological aspects of juvenile periodontitis (periodontosis). J Periodontal Res. 1974;9(5):261–272. doi: 10.1111/j.1600-0765.1974.tb00681.x. [DOI] [PubMed] [Google Scholar]
  14. Reddy K. J., Webb R., Sherman L. A. Bacterial RNA isolation with one hour centrifugation in a table-top ultracentrifuge. Biotechniques. 1990 Mar;8(3):250–251. [PubMed] [Google Scholar]
  15. Ribot S., Gal K., Goldblat M. V., Eslami H. H. The role of anaerobic bacteria in the pathogenesis of urinary tract infections. J Urol. 1981 Dec;126(6):852–853. doi: 10.1016/s0022-5347(17)54781-3. [DOI] [PubMed] [Google Scholar]
  16. Ross A. M., Golub E. E. A computer graphics program system for protein structure representation. Nucleic Acids Res. 1988 Mar 11;16(5):1801–1812. doi: 10.1093/nar/16.5.1801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sabiston C. B., Jr, Gold W. A. Anaerobic bacteria in oral infections. Oral Surg Oral Med Oral Pathol. 1974 Aug;38(2):187–192. doi: 10.1016/0030-4220(74)90054-1. [DOI] [PubMed] [Google Scholar]
  18. Schiffer M., Edmundson A. B. Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. Biophys J. 1967 Mar;7(2):121–135. doi: 10.1016/S0006-3495(67)86579-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schwab J. H. Suppression of the immune response by microorganisms. Bacteriol Rev. 1975 Jun;39(2):121–143. doi: 10.1128/br.39.2.121-143.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shenker B. J., Datar S. Fusobacterium nucleatum inhibits human T-cell activation by arresting cells in the mid-G1 phase of the cell cycle. Infect Immun. 1995 Dec;63(12):4830–4836. doi: 10.1128/iai.63.12.4830-4836.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shenker B. J., DiRienzo J. M. Suppression of human peripheral blood lymphocytes by Fusobacterium nucleatum. J Immunol. 1984 May;132(5):2357–2362. [PubMed] [Google Scholar]
  22. Shenker B. J., Rooney C., Vitale L., Shapiro I. M. Immunotoxic effects of mercuric compounds on human lymphocytes and monocytes. I. Suppression of T-cell activation. Immunopharmacol Immunotoxicol. 1992;14(3):539–553. doi: 10.3109/08923979209005410. [DOI] [PubMed] [Google Scholar]
  23. Slots J. The predominant cultivable microflora of advanced periodontitis. Scand J Dent Res. 1977 Jan-Feb;85(2):114–121. doi: 10.1111/j.1600-0722.1977.tb00541.x. [DOI] [PubMed] [Google Scholar]
  24. Stim-Herndon K. P., Petersen D. J., Bennett G. N. Characterization of an acetyl-CoA C-acetyltransferase (thiolase) gene from Clostridium acetobutylicum ATCC 824. Gene. 1995 Feb 27;154(1):81–85. doi: 10.1016/0378-1119(94)00838-j. [DOI] [PubMed] [Google Scholar]
  25. Truant A. L., Menge S., Milliorn K., Lairscey R., Kelly M. T. Fusobacterium nucleatum pericarditis. J Clin Microbiol. 1983 Feb;17(2):349–351. doi: 10.1128/jcm.17.2.349-351.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Weir D. M., Blackwell C. C. Interaction of bacteria with the immune system. J Clin Lab Immunol. 1983 Jan;10(1):1–12. [PubMed] [Google Scholar]
  27. Williams B. L., Pantalone R. M., Sherris J. C. Subgingival microflora and periodontitis. J Periodontal Res. 1976 Feb;11(1):1–18. doi: 10.1111/j.1600-0765.1976.tb00045.x. [DOI] [PubMed] [Google Scholar]
  28. Wittgow W. C., Jr, Sabiston C. B., Jr Microorganisms from pulpal chambers of intact teeth with necrotic pulps. J Endod. 1975 May;1(5):168–171. doi: 10.1016/S0099-2399(75)80115-4. [DOI] [PubMed] [Google Scholar]
  29. Yamashita K., Ohfuji Y., Yoshie H., Hara K. Blastogenic response and immunoglobulin production by inflamed gingival lymphocytes from dogs. J Periodontal Res. 1988 Sep;23(5):322–327. doi: 10.1111/j.1600-0765.1988.tb01425.x. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES