Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2004 Sep;75(9):1314–1322. doi: 10.1136/jnnp.2003.017046

Gross morphology and morphometric sequelae in the hippocampus, fornix, and corpus callosum of patients with severe non-missile traumatic brain injury without macroscopically detectable lesions: a T1 weighted MRI study

F Tomaiuolo 1, G Carlesimo 1, P Di 1, M Petrides 1, F Fera 1, R Bonanni 1, R Formisano 1, P Pasqualetti 1, C Caltagirone 1
PMCID: PMC1739237  PMID: 15314123

Abstract

Objective: The gross morphology and morphometry of the hippocampus, fornix, and corpus callosum in patients with severe non-missile traumatic brain injury (nmTBI) without obvious neuroradiological lesions was examined and the volumes of these structures were correlated with performance on memory tests. In addition, the predictability of the length of coma from the selected anatomical volumes was examined.

Method: High spatial resolution T1 weighted MRI scans of the brain (1 mm3) and neuropsychological evaluations with standardised tests were performed at least 3 months after trauma in 19 patients.

Results: In comparison with control subjects matched in terms of gender and age, volume reduction in the hippocampus, fornix, and corpus callosum of the nmTBI patients was quantitatively significant. The length of coma correlated with the volume reduction in the corpus callosum. Immediate free recall of word lists correlated with the volume of the fornix and the corpus callosum. Delayed recall of word lists and immediate recall of the Rey figure both correlated with the volume of the fornix. Delayed recall of the Rey figure correlated with the volume of the fornix and the right hippocampus.

Conclusion: These findings demonstrate that in severe nmTBI without obvious neuroradiological lesions there is a clear hippocampal, fornix, and callosal volume reduction. The length of coma predicts the callosal volume reduction, which could be considered a marker of the severity of axonal loss. A few memory test scores correlated with the volumes of the selected anatomical structures. This relationship with memory performance may reflect the diffuse nature of the damage, leading to the disruption of neural circuits at multiple levels and the progressive neural degeneration occurring in TBI.

Full Text

The Full Text of this article is available as a PDF (373.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. H., Graham D. I., Jennett B. The neuropathology of the vegetative state after an acute brain insult. Brain. 2000 Jul;123(Pt 7):1327–1338. doi: 10.1093/brain/123.7.1327. [DOI] [PubMed] [Google Scholar]
  2. Azouvi P. Neuroimaging correlates of cognitive and functional outcome after traumatic brain injury. Curr Opin Neurol. 2000 Dec;13(6):665–669. doi: 10.1097/00019052-200012000-00009. [DOI] [PubMed] [Google Scholar]
  3. Bermudez P., Zatorre R. J. Sexual dimorphism in the corpus callosum: methodological considerations in MRI morphometry. Neuroimage. 2001 Jun;13(6 Pt 1):1121–1130. doi: 10.1006/nimg.2001.0772. [DOI] [PubMed] [Google Scholar]
  4. Bigler E. D., Blatter D. D., Anderson C. V., Johnson S. C., Gale S. D., Hopkins R. O., Burnett B. Hippocampal volume in normal aging and traumatic brain injury. AJNR Am J Neuroradiol. 1997 Jan;18(1):11–23. [PMC free article] [PubMed] [Google Scholar]
  5. Bigler E. D. Quantitative magnetic resonance imaging in traumatic brain injury. J Head Trauma Rehabil. 2001 Apr;16(2):117–134. doi: 10.1097/00001199-200104000-00003. [DOI] [PubMed] [Google Scholar]
  6. Bigler Erin D., Anderson Carol V., Blatter Duane D., Andersob Carol V. Temporal lobe morphology in normal aging and traumatic brain injury. AJNR Am J Neuroradiol. 2002 Feb;23(2):255–266. [PMC free article] [PubMed] [Google Scholar]
  7. Capruso D. X., Levin H. S. Cognitive impairment following closed head injury. Neurol Clin. 1992 Nov;10(4):879–893. [PubMed] [Google Scholar]
  8. Carlesimo G. A., Caltagirone C., Gainotti G. The Mental Deterioration Battery: normative data, diagnostic reliability and qualitative analyses of cognitive impairment. The Group for the Standardization of the Mental Deterioration Battery. Eur Neurol. 1996;36(6):378–384. doi: 10.1159/000117297. [DOI] [PubMed] [Google Scholar]
  9. Collins D. L., Neelin P., Peters T. M., Evans A. C. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr. 1994 Mar-Apr;18(2):192–205. [PubMed] [Google Scholar]
  10. Gale S. D., Burr R. B., Bigler E. D., Blatter D. Fornix degeneration and memory in traumatic brain injury. Brain Res Bull. 1993;32(4):345–349. doi: 10.1016/0361-9230(93)90198-k. [DOI] [PubMed] [Google Scholar]
  11. Gale S. D., Johnson S. C., Bigler E. D., Blatter D. D. Nonspecific white matter degeneration following traumatic brain injury. J Int Neuropsychol Soc. 1995 Jan;1(1):17–28. doi: 10.1017/s1355617700000060. [DOI] [PubMed] [Google Scholar]
  12. Gennarelli T. A., Thibault L. E., Adams J. H., Graham D. I., Thompson C. J., Marcincin R. P. Diffuse axonal injury and traumatic coma in the primate. Ann Neurol. 1982 Dec;12(6):564–574. doi: 10.1002/ana.410120611. [DOI] [PubMed] [Google Scholar]
  13. Henry-Feugeas M. C., Azouvi P., Fontaine A., Denys P., Bussel B., Maaz F., Samson Y., Schouman-Claeys E. MRI analysis of brain atrophy after severe closed-head injury: relation to clinical status. Brain Inj. 2000 Jul;14(7):597–604. doi: 10.1080/02699050050043962. [DOI] [PubMed] [Google Scholar]
  14. Jäncke L., Preis S., Steinmetz H. The relation between forebrain volume and midsagittal size of the corpus callosum in children. Neuroreport. 1999 Sep 29;10(14):2981–2985. doi: 10.1097/00001756-199909290-00020. [DOI] [PubMed] [Google Scholar]
  15. Jäncke L., Staiger J. F., Schlaug G., Huang Y., Steinmetz H. The relationship between corpus callosum size and forebrain volume. Cereb Cortex. 1997 Jan-Feb;7(1):48–56. doi: 10.1093/cercor/7.1.48. [DOI] [PubMed] [Google Scholar]
  16. Kilpatrick C., Murrie V., Cook M., Andrewes D., Desmond P., Hopper J. Degree of left hippocampal atrophy correlates with severity of neuropsychological deficits. Seizure. 1997 Jun;6(3):213–218. doi: 10.1016/s1059-1311(97)80008-8. [DOI] [PubMed] [Google Scholar]
  17. Levin H. S., Goldstein F. C., High W. M., Jr, Eisenberg H. M. Disproportionately severe memory deficit in relation to normal intellectual functioning after closed head injury. J Neurol Neurosurg Psychiatry. 1988 Oct;51(10):1294–1301. doi: 10.1136/jnnp.51.10.1294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Levin H. S., Williams D. H., Valastro M., Eisenberg H. M., Crofford M. J., Handel S. F. Corpus callosal atrophy following closed head injury: detection with magnetic resonance imaging. J Neurosurg. 1990 Jul;73(1):77–81. doi: 10.3171/jns.1990.73.1.0077. [DOI] [PubMed] [Google Scholar]
  19. Maxwell W. L., Dhillon K., Harper L., Espin J., MacIntosh T. K., Smith D. H., Graham D. I. There is differential loss of pyramidal cells from the human hippocampus with survival after blunt head injury. J Neuropathol Exp Neurol. 2003 Mar;62(3):272–279. doi: 10.1093/jnen/62.3.272. [DOI] [PubMed] [Google Scholar]
  20. Maxwell W. L., Povlishock J. T., Graham D. L. A mechanistic analysis of nondisruptive axonal injury: a review. J Neurotrauma. 1997 Jul;14(7):419–440. doi: 10.1089/neu.1997.14.419. [DOI] [PubMed] [Google Scholar]
  21. Mishkin M. Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus. Nature. 1978 May 25;273(5660):297–298. doi: 10.1038/273297a0. [DOI] [PubMed] [Google Scholar]
  22. Paus T., Otaky N., Caramanos Z., MacDonald D., Zijdenbos A., D'Avirro D., Gutmans D., Holmes C., Tomaiuolo F., Evans A. C. In vivo morphometry of the intrasulcal gray matter in the human cingulate, paracingulate, and superior-rostral sulci: hemispheric asymmetries, gender differences and probability maps. J Comp Neurol. 1996 Dec 23;376(4):664–673. doi: 10.1002/(SICI)1096-9861(19961223)376:4<664::AID-CNE12>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  23. Penhune V. B., Zatorre R. J., MacDonald J. D., Evans A. C. Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb Cortex. 1996 Sep-Oct;6(5):661–672. doi: 10.1093/cercor/6.5.661. [DOI] [PubMed] [Google Scholar]
  24. Pruessner J. C., Li L. M., Serles W., Pruessner M., Collins D. L., Kabani N., Lupien S., Evans A. C. Volumetry of hippocampus and amygdala with high-resolution MRI and three-dimensional analysis software: minimizing the discrepancies between laboratories. Cereb Cortex. 2000 Apr;10(4):433–442. doi: 10.1093/cercor/10.4.433. [DOI] [PubMed] [Google Scholar]
  25. Runnerstam M., Bao F., Huang Y., Shi J., Gutierrez E., Hamberger A., Hansson H. A., Viano D., Haglid K. A new model for diffuse brain injury by rotational acceleration: II. Effects on extracellular glutamate, intracranial pressure, and neuronal apoptosis. J Neurotrauma. 2001 Mar;18(3):259–273. doi: 10.1089/08977150151070892. [DOI] [PubMed] [Google Scholar]
  26. SCOVILLE W. B., MILNER B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry. 1957 Feb;20(1):11–21. doi: 10.1136/jnnp.20.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schmitt J. E., Eliez S., Warsofsky I. S., Bellugi U., Reiss A. L. Corpus callosum morphology of Williams syndrome: relation to genetics and behavior. Dev Med Child Neurol. 2001 Mar;43(3):155–159. [PubMed] [Google Scholar]
  28. Spiers H. J., Maguire E. A., Burgess N. Hippocampal amnesia. Neurocase. 2001;7(5):357–382. doi: 10.1076/neur.7.5.357.16245. [DOI] [PubMed] [Google Scholar]
  29. Squire L. R., Zola-Morgan S. The medial temporal lobe memory system. Science. 1991 Sep 20;253(5026):1380–1386. doi: 10.1126/science.1896849. [DOI] [PubMed] [Google Scholar]
  30. Tate D. F., Bigler E. D. Fornix and hippocampal atrophy in traumatic brain injury. Learn Mem. 2000 Nov-Dec;7(6):442–446. doi: 10.1101/lm.33000. [DOI] [PubMed] [Google Scholar]
  31. Tomaiuolo F., Di Paola M., Caravale B., Vicari S., Petrides M., Caltagirone C. Morphology and morphometry of the corpus callosum in Williams syndrome: a T1-weighted MRI study. Neuroreport. 2002 Dec 3;13(17):2281–2284. doi: 10.1097/00001756-200212030-00022. [DOI] [PubMed] [Google Scholar]
  32. Tomaiuolo F., MacDonald J. D., Caramanos Z., Posner G., Chiavaras M., Evans A. C., Petrides M. Morphology, morphometry and probability mapping of the pars opercularis of the inferior frontal gyrus: an in vivo MRI analysis. Eur J Neurosci. 1999 Sep;11(9):3033–3046. doi: 10.1046/j.1460-9568.1999.00718.x. [DOI] [PubMed] [Google Scholar]
  33. Wallesch C. W., Curio N., Galazky I., Jost S., Synowitz H. The neuropsychology of blunt head injury in the early postacute stage: effects of focal lesions and diffuse axonal injury. J Neurotrauma. 2001 Jan;18(1):11–20. doi: 10.1089/089771501750055730. [DOI] [PubMed] [Google Scholar]
  34. Watson C., Andermann F., Gloor P., Jones-Gotman M., Peters T., Evans A., Olivier A., Melanson D., Leroux G. Anatomic basis of amygdaloid and hippocampal volume measurement by magnetic resonance imaging. Neurology. 1992 Sep;42(9):1743–1750. doi: 10.1212/wnl.42.9.1743. [DOI] [PubMed] [Google Scholar]
  35. Wilson J. T., Hadley D. M., Wiedmann K. D., Teasdale G. M. Neuropsychological consequences of two patterns of brain damage shown by MRI in survivors of severe head injury. J Neurol Neurosurg Psychiatry. 1995 Sep;59(3):328–331. doi: 10.1136/jnnp.59.3.328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Witelson S. F. Hand and sex differences in the isthmus and genu of the human corpus callosum. A postmortem morphological study. Brain. 1989 Jun;112(Pt 3):799–835. doi: 10.1093/brain/112.3.799. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES