Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Apr;64(4):1342–1350. doi: 10.1128/iai.64.4.1342-1350.1996

Functional chemotactic factor CP-10 and MRP-14 are abundant in murine abscesses.

M Kocher 1, P A Kenny 1, E Farram 1, K B Abdul Majid 1, J J Finlay-Jones 1, L Geczy C 1
PMCID: PMC173924  PMID: 8606099

Abstract

Murine abscesses induced by intraperitoneal injection of a mixture of Escherichia coli, Bacteroides fragilis, and bran are established models for the study of localized infectious and inflammatory lesions. Chemotactic factors are though to mediate the directed migration of large numbers of leukocytes into the abscess. Microorganisms located within the encapsulated lesion are not readily eliminated by the leukocytes, but their numbers are controlled over many weeks. We report the presence of large amounts of two murine S100 proteins, CP-10 and migration inhibition factor-related protein 14 (MRP-14), in abscesses as demonstrated by immunohistochemistry and measured by enzyme-linked immunosorbent assay and Western blotting (immunoblotting). High levels of CP-10 (7.7 +/- 1 mg/ml) and MRP-14 (5.5 +/- 1 mg/ml) were found throughout the time course of abscess development from early acute-phase lesions, which are predominantly neutrophilic, to late chronic-phase lesions, which contained more mononuclear cells. Approximately one-third of these amounts occurred as monomers (2.0 mg/ml for MRP 14 and 2.2 mg/ml for CP-10). Abscess fluid was strongly chemotactic, and a portion of the activity was due to CP-10, indicating its important role in leukocyte recruitment. CP-10-MRP-14 complexes were present in abscess fluid, and the proteins were immunoabsorbed together. In analogy with the related human MRP-8-MRP-14 complex, these proteins could be involved in the inhibition of microbial growth. No growth inhibition occurred with 20 microgram of CP-10 or MRP-14 per ml or with mixtures of both, but these concentrations may have been insufficient and were not representative of the high concentrations found within abscesses. CP-10 may contribute indirectly to the antimicrobial response in abscesses by virtue of its strong chemotactic properties and its capacity to modulate the activation state of recruited leukocytes.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bamberger D. M., Herndon B. L. Bactericidal capacity of neutrophils in rabbits with experimental acute and chronic abscesses. J Infect Dis. 1990 Jul;162(1):186–192. doi: 10.1093/infdis/162.1.186. [DOI] [PubMed] [Google Scholar]
  2. Barger S. W., Wolchok S. R., Van Eldik L. J. Disulfide-linked S100 beta dimers and signal transduction. Biochim Biophys Acta. 1992 Nov 10;1160(1):105–112. doi: 10.1016/0167-4838(92)90043-d. [DOI] [PubMed] [Google Scholar]
  3. Bayer E. A., Wilchek M. Protein biotinylation. Methods Enzymol. 1990;184:138–160. doi: 10.1016/0076-6879(90)84268-l. [DOI] [PubMed] [Google Scholar]
  4. Berntzen H. B., Fagerhol M. K. L1, a major granulocyte protein; isolation of high quantities of its subunits. Scand J Clin Lab Invest. 1990 Nov;50(7):769–774. doi: 10.1080/00365519009091071. [DOI] [PubMed] [Google Scholar]
  5. Bhardwaj R. S., Zotz C., Zwadlo-Klarwasser G., Roth J., Goebeler M., Mahnke K., Falk M., Meinardus-Hager G., Sorg C. The calcium-binding proteins MRP8 and MRP14 form a membrane-associated heterodimer in a subset of monocytes/macrophages present in acute but absent in chronic inflammatory lesions. Eur J Immunol. 1992 Jul;22(7):1891–1897. doi: 10.1002/eji.1830220732. [DOI] [PubMed] [Google Scholar]
  6. Brandtzaeg P., Dale I., Fagerhol M. K. Distribution of a formalin-resistant myelomonocytic antigen (L1) in human tissues. I. Comparison with other leukocyte markers by paired immunofluorescence and immunoenzyme staining. Am J Clin Pathol. 1987 Jun;87(6):681–699. doi: 10.1093/ajcp/87.6.681. [DOI] [PubMed] [Google Scholar]
  7. Clark B. R., Kelly S. E., Fleming S. Calgranulin expression and association with the keratinocyte cytoskeleton. J Pathol. 1990 Jan;160(1):25–30. doi: 10.1002/path.1711600107. [DOI] [PubMed] [Google Scholar]
  8. Dale I., Fagerhol M. K., Naesgaard I. Purification and partial characterization of a highly immunogenic human leukocyte protein, the L1 antigen. Eur J Biochem. 1983 Jul 15;134(1):1–6. doi: 10.1111/j.1432-1033.1983.tb07522.x. [DOI] [PubMed] [Google Scholar]
  9. Devery J. M., King N. J., Geczy C. L. Acute inflammatory activity of the S100 protein CP-10. Activation of neutrophils in vivo and in vitro. J Immunol. 1994 Feb 15;152(4):1888–1897. [PubMed] [Google Scholar]
  10. Dorin J. R., Novak M., Hill R. E., Brock D. J., Secher D. S., van Heyningen V. A clue to the basic defect in cystic fibrosis from cloning the CF antigen gene. Nature. 1987 Apr 9;326(6113):614–617. doi: 10.1038/326614a0. [DOI] [PubMed] [Google Scholar]
  11. Edgeworth J. D., Abiose A., Jones B. R. An immunohistochemical analysis of onchocercal nodules: evidence for an interaction between macrophage MRP8/MRP14 and adult Onchocerca volvulus. Clin Exp Immunol. 1993 Apr;92(1):84–92. doi: 10.1111/j.1365-2249.1993.tb05952.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Edgeworth J., Freemont P., Hogg N. Ionomycin-regulated phosphorylation of the myeloid calcium-binding protein p14. Nature. 1989 Nov 9;342(6246):189–192. doi: 10.1038/342189a0. [DOI] [PubMed] [Google Scholar]
  13. Edgeworth J., Gorman M., Bennett R., Freemont P., Hogg N. Identification of p8,14 as a highly abundant heterodimeric calcium binding protein complex of myeloid cells. J Biol Chem. 1991 Apr 25;266(12):7706–7713. [PubMed] [Google Scholar]
  14. Ganz T., Selsted M. E., Lehrer R. I. Defensins. Eur J Haematol. 1990 Jan;44(1):1–8. doi: 10.1111/j.1600-0609.1990.tb00339.x. [DOI] [PubMed] [Google Scholar]
  15. Glenney J. R., Jr, Kindy M. S., Zokas L. Isolation of a new member of the S100 protein family: amino acid sequence, tissue, and subcellular distribution. J Cell Biol. 1989 Feb;108(2):569–578. doi: 10.1083/jcb.108.2.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Goebeler M., Roth J., Burwinkel F., Vollmer E., Böcker W., Sorg C. Expression and complex formation of S100-like proteins MRP8 and MRP14 by macrophages during renal allograft rejection. Transplantation. 1994 Aug 15;58(3):355–361. [PubMed] [Google Scholar]
  17. Hampton R. Y., Golenbock D. T., Penman M., Krieger M., Raetz C. R. Recognition and plasma clearance of endotoxin by scavenger receptors. Nature. 1991 Jul 25;352(6333):342–344. doi: 10.1038/352342a0. [DOI] [PubMed] [Google Scholar]
  18. Hart P. H., Spencer L. K., Nulsen M. F., McDonald P. J., Finlay-Jones J. J. Neutrophil activity in abscess-bearing mice: comparative studies with neutrophils isolated from peripheral blood, elicited peritoneal exudates, and abscesses. Infect Immun. 1986 Mar;51(3):936–941. doi: 10.1128/iai.51.3.936-941.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hessian P. A., Edgeworth J., Hogg N. MRP-8 and MRP-14, two abundant Ca(2+)-binding proteins of neutrophils and monocytes. J Leukoc Biol. 1993 Feb;53(2):197–204. [PubMed] [Google Scholar]
  20. Hoad R. B., Geczy C. L. Characterisation of monoclonal antibodies to human factor X/Xa. Initial observations with a quantitative ELISA procedure. J Immunol Methods. 1991 Feb 15;136(2):269–278. doi: 10.1016/0022-1759(91)90013-6. [DOI] [PubMed] [Google Scholar]
  21. Hogg N., Allen C., Edgeworth J. Monoclonal antibody 5.5 reacts with p8,14, a myeloid molecule associated with some vascular endothelium. Eur J Immunol. 1989 Jun;19(6):1053–1061. doi: 10.1002/eji.1830190615. [DOI] [PubMed] [Google Scholar]
  22. Hugli T. E. Chemotaxis. Curr Opin Immunol. 1989 Oct;2(1):19–27. doi: 10.1016/0952-7915(89)90092-7. [DOI] [PubMed] [Google Scholar]
  23. Iismaa S. E., Hu S., Kocher M., Lackmann M., Harrison C. A., Thliveris S., Geczy C. L. Recombinant and cellular expression of the murine chemotactic protein, CP-10. DNA Cell Biol. 1994 Feb;13(2):183–192. doi: 10.1089/dna.1994.13.183. [DOI] [PubMed] [Google Scholar]
  24. Kenny P. A., Spencer L. K., McDonald P. J., Finlay-Jones J. J. Functional activity of individual abscess neutrophils from mice. Infect Immun. 1990 Dec;58(12):4004–4010. doi: 10.1128/iai.58.12.4004-4010.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kligman D., Hilt D. C. The S100 protein family. Trends Biochem Sci. 1988 Nov;13(11):437–443. doi: 10.1016/0968-0004(88)90218-6. [DOI] [PubMed] [Google Scholar]
  26. Lackmann M., Cornish C. J., Simpson R. J., Moritz R. L., Geczy C. L. Purification and structural analysis of a murine chemotactic cytokine (CP-10) with sequence homology to S100 proteins. J Biol Chem. 1992 Apr 15;267(11):7499–7504. [PubMed] [Google Scholar]
  27. Lackmann M., Rajasekariah P., Iismaa S. E., Jones G., Cornish C. J., Hu S., Simpson R. J., Moritz R. L., Geczy C. L. Identification of a chemotactic domain of the pro-inflammatory S100 protein CP-10. J Immunol. 1993 Apr 1;150(7):2981–2991. [PubMed] [Google Scholar]
  28. Lagasse E., Weissman I. L. Mouse MRP8 and MRP14, two intracellular calcium-binding proteins associated with the development of the myeloid lineage. Blood. 1992 Apr 15;79(8):1907–1915. [PubMed] [Google Scholar]
  29. Lau W., Devery J. M., Geczy C. L. A chemotactic S100 peptide enhances scavenger receptor and Mac-1 expression and cholesteryl ester accumulation in murine peritoneal macrophages in vivo. J Clin Invest. 1995 May;95(5):1957–1965. doi: 10.1172/JCI117879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lemarchand P., Vaglio M., Mauël J., Markert M. Translocation of a small cytosolic calcium-binding protein (MRP-8) to plasma membrane correlates with human neutrophil activation. J Biol Chem. 1992 Sep 25;267(27):19379–19382. [PubMed] [Google Scholar]
  31. Murthy A. R., Lehrer R. I., Harwig S. S., Miyasaki K. T. In vitro candidastatic properties of the human neutrophil calprotectin complex. J Immunol. 1993 Dec 1;151(11):6291–6301. [PubMed] [Google Scholar]
  32. Nulsen M. F., Finlay-Jones J. J., Skinner J. M., McDonald P. J. Intra-abdominal abscess formation in mice: quantitative studies on bacteria and abscess-potentiating agents. Br J Exp Pathol. 1983 Aug;64(4):345–353. [PMC free article] [PubMed] [Google Scholar]
  33. Oppenheim J. J., Zachariae C. O., Mukaida N., Matsushima K. Properties of the novel proinflammatory supergene "intercrine" cytokine family. Annu Rev Immunol. 1991;9:617–648. doi: 10.1146/annurev.iy.09.040191.003153. [DOI] [PubMed] [Google Scholar]
  34. Palmer D. G., Hogg N., Allen C. A., Highton J., Hessian P. A. A mononuclear phagocyte subset associated with cell necrosis in rheumatoid nodules: identification with monoclonal antibody 5.5. Clin Immunol Immunopathol. 1987 Oct;45(1):17–28. doi: 10.1016/0090-1229(87)90107-3. [DOI] [PubMed] [Google Scholar]
  35. Pereira H. A., Erdem I., Pohl J., Spitznagel J. K. Synthetic bactericidal peptide based on CAP37: a 37-kDa human neutrophil granule-associated cationic antimicrobial protein chemotactic for monocytes. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4733–4737. doi: 10.1073/pnas.90.10.4733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Root R. K., Cohen M. S. The microbicidal mechanisms of human neutrophils and eosinophils. Rev Infect Dis. 1981 May-Jun;3(3):565–598. doi: 10.1093/clinids/3.3.565. [DOI] [PubMed] [Google Scholar]
  37. Roth J., Burwinkel F., van den Bos C., Goebeler M., Vollmer E., Sorg C. MRP8 and MRP14, S-100-like proteins associated with myeloid differentiation, are translocated to plasma membrane and intermediate filaments in a calcium-dependent manner. Blood. 1993 Sep 15;82(6):1875–1883. [PubMed] [Google Scholar]
  38. Roth J., Sunderkötter C., Goebeler M., Gutwald J., Sorg C. Expression of the calcium-binding proteins MRP8 and MRP14 by early infiltrating cells in experimental contact dermatitis. Int Arch Allergy Immunol. 1992;98(2):140–145. doi: 10.1159/000236177. [DOI] [PubMed] [Google Scholar]
  39. Ryan J., Geczy C. L. Macrophage procoagulant-inducing factor. In vivo properties and chemotactic activity for phagocytic cells. J Immunol. 1988 Sep 15;141(6):2110–2117. [PubMed] [Google Scholar]
  40. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  41. Sohnle P. G., Collins-Lech C. Comparison of candidacidal and candidastatic activities of human neutrophils. Infect Immun. 1990 Aug;58(8):2696–2698. doi: 10.1128/iai.58.8.2696-2698.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sohnle P. G., Collins-Lech C., Wiessner J. H. Antimicrobial activity of an abundant calcium-binding protein in the cytoplasm of human neutrophils. J Infect Dis. 1991 Jan;163(1):187–192. doi: 10.1093/infdis/163.1.187. [DOI] [PubMed] [Google Scholar]
  43. Sohnle P. G., Collins-Lech C., Wiessner J. H. The zinc-reversible antimicrobial activity of neutrophil lysates and abscess fluid supernatants. J Infect Dis. 1991 Jul;164(1):137–142. doi: 10.1093/infdis/164.1.137. [DOI] [PubMed] [Google Scholar]
  44. Steinbakk M., Naess-Andresen C. F., Lingaas E., Dale I., Brandtzaeg P., Fagerhol M. K. Antimicrobial actions of calcium binding leucocyte L1 protein, calprotectin. Lancet. 1990 Sep 29;336(8718):763–765. doi: 10.1016/0140-6736(90)93237-j. [DOI] [PubMed] [Google Scholar]
  45. Teigelkamp S., Bhardwaj R. S., Roth J., Meinardus-Hager G., Karas M., Sorg C. Calcium-dependent complex assembly of the myeloic differentiation proteins MRP-8 and MRP-14. J Biol Chem. 1991 Jul 15;266(20):13462–13467. [PubMed] [Google Scholar]
  46. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Zwadlo G., Brüggen J., Gerhards G., Schlegel R., Sorg C. Two calcium-binding proteins associated with specific stages of myeloid cell differentiation are expressed by subsets of macrophages in inflammatory tissues. Clin Exp Immunol. 1988 Jun;72(3):510–515. [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES