Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2005 Nov;76(11):1497–1500. doi: 10.1136/jnnp.2005.064998

Medial temporal lobe atrophy and white matter hyperintensities are associated with mild cognitive deficits in non-disabled elderly people: the LADIS study

W M van der Flier 1, E C W van Straaten 1, F Barkhof 1, J Ferro 1, L Pantoni 1, A Basile 1, D Inzitari 1, T Erkinjuntti 1, L Wahlund 1, E Rostrup 1, R Schmidt 1, F Fazekas 1, P Scheltens 1, b on 1
PMCID: PMC1739423  PMID: 16227537

Abstract

Objective: To assess the associations of medial temporal lobe atrophy (MTA) and white matter hyperintensities (WMH) with cognitive function in a large group of independently functioning elderly people.

Methods: Data were drawn from the multicentre, multinational leukoaraiosis and disability (LADIS) project which is studying prospectively the role of WMH as an independent predictor of the transition to disability in non-disabled elderly people. In all, 639 participants were enrolled in the LADIS study. For the present analysis, data on 581 subjects were available. Cognitive function was assessed by the mini-mental state examination (MMSE). Visual ratings of WMH and MTA were undertaken on magnetic resonance images (MRI).

Results: The presence of either severe WMH or MTA was associated with a modest but non-significant increase in frequency of mild cognitive deficits (severe WMH: odds ratio (OR) = 1.9 (95% confidence interval (CI), 1.0 to 3.7); MTA present: OR = 1.5 (95% CI, 0.8 to 2.8)). However, subjects with the combination of MTA and severe WMH had a more than fourfold increase in frequency of mild cognitive deficits (OR = 4.1 (95% CI, 2.3 to 7.4)). Analysis of variance with post hoc Bonferroni t tests showed that subjects with both MTA and severe WMH performed worse on MMSE than those with either no MRI abnormality or a single MRI abnormality (p<0.05).

Conclusions: These results provide further evidence for the combined involvement of both Alzheimer type pathology and vascular pathology in the earliest stages of cognitive decline and suggest an additive effect of WMH and MTA.

Full Text

The Full Text of this article is available as a PDF (120.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bruyn G. W. Glossopharyngeal neuralgia. Cephalalgia. 1983 Sep;3(3):143–157. doi: 10.1046/j.1468-2982.1983.0303143.x. [DOI] [PubMed] [Google Scholar]
  2. Chetelat Gaël, Baron Jean-Claude. Early diagnosis of Alzheimer's disease: contribution of structural neuroimaging. Neuroimage. 2003 Feb;18(2):525–541. doi: 10.1016/s1053-8119(02)00026-5. [DOI] [PubMed] [Google Scholar]
  3. Elias Jorge, Kuniyoshi Ricardo, Carloni Wilson Valadão Hermes, Borges Mauricio Rocha, Peixoto Carlos Alberto, Pimentel Derval. Glossopharyngeal neuralgia associated with cardiac syncope. Arq Bras Cardiol. 2002 May;78(5):510–519. doi: 10.1590/s0066-782x2002000500008. [DOI] [PubMed] [Google Scholar]
  4. Esiri M. M., Nagy Z., Smith M. Z., Barnetson L., Smith A. D. Cerebrovascular disease and threshold for dementia in the early stages of Alzheimer's disease. Lancet. 1999 Sep 11;354(9182):919–920. doi: 10.1016/S0140-6736(99)02355-7. [DOI] [PubMed] [Google Scholar]
  5. Fazekas F., Chawluk J. B., Alavi A., Hurtig H. I., Zimmerman R. A. MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. AJR Am J Roentgenol. 1987 Aug;149(2):351–356. doi: 10.2214/ajr.149.2.351. [DOI] [PubMed] [Google Scholar]
  6. Folstein M. F., Folstein S. E., McHugh P. R. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975 Nov;12(3):189–198. doi: 10.1016/0022-3956(75)90026-6. [DOI] [PubMed] [Google Scholar]
  7. Fukuda Hitoshi, Ishikawa Masatsune, Okumura Ryosuke. Demonstration of neurovascular compression in trigeminal neuralgia and hemifacial spasm with magnetic resonance imaging: comparison with surgical findings in 60 consecutive cases. Surg Neurol. 2003 Feb;59(2):93–100. doi: 10.1016/s0090-3019(02)00993-x. [DOI] [PubMed] [Google Scholar]
  8. Gosche K. M., Mortimer J. A., Smith C. D., Markesbery W. R., Snowdon D. A. Hippocampal volume as an index of Alzheimer neuropathology: findings from the Nun Study. Neurology. 2002 May 28;58(10):1476–1482. doi: 10.1212/wnl.58.10.1476. [DOI] [PubMed] [Google Scholar]
  9. Lawton M. P., Brody E. M. Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist. 1969 Autumn;9(3):179–186. [PubMed] [Google Scholar]
  10. Mungas D., Jagust W. J., Reed B. R., Kramer J. H., Weiner M. W., Schuff N., Norman D., Mack W. J., Willis L., Chui H. C. MRI predictors of cognition in subcortical ischemic vascular disease and Alzheimer's disease. Neurology. 2001 Dec 26;57(12):2229–2235. doi: 10.1212/wnl.57.12.2229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ozenci M., Karaoguz R., Conkbayir C., Altin T., Kanpolat Y. Glossopharyngeal neuralgia with cardiac syncope treated by glossopharyngeal rhizotomy and microvascular decompression. Europace. 2003 Apr;5(2):149–152. doi: 10.1053/eupc.2002.0298. [DOI] [PubMed] [Google Scholar]
  12. Pantoni L., Garcia J. H. Pathogenesis of leukoaraiosis: a review. Stroke. 1997 Mar;28(3):652–659. doi: 10.1161/01.str.28.3.652. [DOI] [PubMed] [Google Scholar]
  13. Pantoni Leonardo, Basile Anna Maria, Pracucci Giovanni, Asplund Kjell, Bogousslavsky Julien, Chabriat Hugues, Erkinjuntti Timo, Fazekas Franz, Ferro José M., Hennerici Michael. Impact of age-related cerebral white matter changes on the transition to disability -- the LADIS study: rationale, design and methodology. Neuroepidemiology. 2005;24(1-2):51–62. doi: 10.1159/000081050. [DOI] [PubMed] [Google Scholar]
  14. Petersen R. C., Jack C. R., Jr, Xu Y. C., Waring S. C., O'Brien P. C., Smith G. E., Ivnik R. J., Tangalos E. G., Boeve B. F., Kokmen E. Memory and MRI-based hippocampal volumes in aging and AD. Neurology. 2000 Feb 8;54(3):581–587. doi: 10.1212/wnl.54.3.581. [DOI] [PubMed] [Google Scholar]
  15. Scheltens P., Launer L. J., Barkhof F., Weinstein H. C., van Gool W. A. Visual assessment of medial temporal lobe atrophy on magnetic resonance imaging: interobserver reliability. J Neurol. 1995 Sep;242(9):557–560. doi: 10.1007/BF00868807. [DOI] [PubMed] [Google Scholar]
  16. Snowdon D. A., Greiner L. H., Mortimer J. A., Riley K. P., Greiner P. A., Markesbery W. R. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA. 1997 Mar 12;277(10):813–817. [PubMed] [Google Scholar]
  17. Yu Y. L., Moseley I. F., Pullicino P., McDonald W. I. The clinical picture of ectasia of the intracerebral arteries. J Neurol Neurosurg Psychiatry. 1982 Jan;45(1):29–36. doi: 10.1136/jnnp.45.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. de Leeuw Frank-Erik, Barkhof Frederik, Scheltens Philip. White matter lesions and hippocampal atrophy in Alzheimer's disease. Neurology. 2004 Jan 27;62(2):310–312. doi: 10.1212/01.wnl.0000103289.03648.ad. [DOI] [PubMed] [Google Scholar]
  19. van der Flier W. M., Middelkoop H. A. M., Weverling-Rijnsburger A. W. E., Admiraal-Behloul F., Spilt A., Bollen E. L. E. M., Westendorp R. G. J., van Buchem M. A. Interaction of medial temporal lobe atrophy and white matter hyperintensities in AD. Neurology. 2004 May 25;62(10):1862–1864. doi: 10.1212/01.wnl.0000125337.65553.8a. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES