Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2005 Feb;76(2):206–211. doi: 10.1136/jnnp.2004.043315

Axonal damage accumulates in the progressive phase of multiple sclerosis: three year follow up study

A Petzold 1, M Eikelenboom 1, G Keir 1, D Grant 1, R Lazeron 1, C Polman 1, B Uitdehaag 1, E Thompson 1, G Giovannoni 1
PMCID: PMC1739484  PMID: 15654034

Abstract

Background: Neurofilament phosphoforms (Nf) are principal components of the axoskeleton released during axonal injury. Cerebrospinal fluid (CSF) levels of Nf phosphoforms might be useful surrogate markers for disability in multiple sclerosis (MS), aid in distinguishing clinical subtypes, and provide valuable prognostic information.

Method: Thirty four patients with MS were included in a three year follow up study along with 318 controls with other non-inflammatory neurological diseases. CSF levels of two Nf heavy chain (NfH) phosphoforms (NfHSMI35, NfHSMI34) were quantified at baseline and three year follow up using new ELISA techniques. Levels of NfH phosphoforms, the degree of phosphorylation (NfHSMI34:NfHSMI35 ratio), and changes in NfH levels between baseline and follow up (ΔNfH) were related to the clinical phenotype (RR or SP/PP), to three clinical scales (Kurtzke's EDSS, ambulation index (AI), and nine hole peg test (9HPT)), and to progression of disability.

Results: A significantly higher proportion (59%) of patients with SP/PPMS experienced an increase in NfHSMI35 levels between baseline and follow up compared with those with RRMS (14%, p<0.05). CSF NfHSMI34 levels at baseline were higher in patients with SP/PP (11 pg/ml) compared with RR (7 pg/ml, p<0.05) and NfHSMI35 levels were higher at follow up in SP/PP (129 pg/ml) compared with levels below assay sensitivity in RR (p<0.05). NfHSMI35 correlated with the EDSS (rs = 0.54, p<0.01), the AI (rs = 0.42, p<0.05), and the 9HPT (rs = 0.59, p<0.01) at follow up.

Conclusion: The increase in NfH during the progressive phase of the disease together with the correlation of NfHSMI35 with all clinical scales at follow up suggests that cumulative axonal loss is responsible for sustained disability and that high NfHSMI35 levels are a poor prognostic sign.

Full Text

The Full Text of this article is available as a PDF (95.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackerley S., Grierson A. J., Brownlees J., Thornhill P., Anderton B. H., Leigh P. N., Shaw C. E., Miller C. C. Glutamate slows axonal transport of neurofilaments in transfected neurons. J Cell Biol. 2000 Jul 10;150(1):165–176. doi: 10.1083/jcb.150.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ackerley Steven, Thornhill Paul, Grierson Andrew J., Brownlees Janet, Anderton Brian H., Leigh P. Nigel, Shaw Christopher E., Miller Christopher C. J. Neurofilament heavy chain side arm phosphorylation regulates axonal transport of neurofilaments. J Cell Biol. 2003 May 12;161(3):489–495. doi: 10.1083/jcb.200303138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Adams C. W. The onset and progression of the lesion in multiple sclerosis. J Neurol Sci. 1975 Jun;25(2):165–182. doi: 10.1016/0022-510x(75)90138-0. [DOI] [PubMed] [Google Scholar]
  4. Akassoglou K., Kombrinck K. W., Degen J. L., Strickland S. Tissue plasminogen activator-mediated fibrinolysis protects against axonal degeneration and demyelination after sciatic nerve injury. J Cell Biol. 2000 May 29;149(5):1157–1166. doi: 10.1083/jcb.149.5.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Akassoglou Katerina, Yu Wei Ming, Akpinar Pinar, Strickland Sidney. Fibrin inhibits peripheral nerve remyelination by regulating Schwann cell differentiation. Neuron. 2002 Mar 14;33(6):861–875. doi: 10.1016/s0896-6273(02)00617-7. [DOI] [PubMed] [Google Scholar]
  6. Barkhof Frederik. The clinico-radiological paradox in multiple sclerosis revisited. Curr Opin Neurol. 2002 Jun;15(3):239–245. doi: 10.1097/00019052-200206000-00003. [DOI] [PubMed] [Google Scholar]
  7. Bitsch A., Schuchardt J., Bunkowski S., Kuhlmann T., Brück W. Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain. 2000 Jun;123(Pt 6):1174–1183. doi: 10.1093/brain/123.6.1174. [DOI] [PubMed] [Google Scholar]
  8. Bjartmar C., Kinkel R. P., Kidd G., Rudick R. A., Trapp B. D. Axonal loss in normal-appearing white matter in a patient with acute MS. Neurology. 2001 Oct 9;57(7):1248–1252. doi: 10.1212/wnl.57.7.1248. [DOI] [PubMed] [Google Scholar]
  9. Brownlees J., Yates A., Bajaj N. P., Davis D., Anderton B. H., Leigh P. N., Shaw C. E., Miller C. C. Phosphorylation of neurofilament heavy chain side-arms by stress activated protein kinase-1b/Jun N-terminal kinase-3. J Cell Sci. 2000 Feb;113(Pt 3):401–407. doi: 10.1242/jcs.113.3.401. [DOI] [PubMed] [Google Scholar]
  10. Confavreux C., Vukusic S., Moreau T., Adeleine P. Relapses and progression of disability in multiple sclerosis. N Engl J Med. 2000 Nov 16;343(20):1430–1438. doi: 10.1056/NEJM200011163432001. [DOI] [PubMed] [Google Scholar]
  11. Cuzner M. L., Davison A. N., Rudge P. Proteolytic enzyme activity of blood leukocytes and cerebrospinal fluid in multiple sclerosis. Ann Neurol. 1978 Oct;4(4):337–344. doi: 10.1002/ana.410040409. [DOI] [PubMed] [Google Scholar]
  12. Eikelenboom M. J., Petzold A., Lazeron R. H. C., Silber E., Sharief M., Thompson E. J., Barkhof F., Giovannoni G., Polman C. H., Uitdehaag B. M. J. Multiple sclerosis: Neurofilament light chain antibodies are correlated to cerebral atrophy. Neurology. 2003 Jan 28;60(2):219–223. doi: 10.1212/01.wnl.0000041496.58127.e3. [DOI] [PubMed] [Google Scholar]
  13. Ferguson B., Matyszak M. K., Esiri M. M., Perry V. H. Axonal damage in acute multiple sclerosis lesions. Brain. 1997 Mar;120(Pt 3):393–399. doi: 10.1093/brain/120.3.393. [DOI] [PubMed] [Google Scholar]
  14. Ge Y., Grossman R. I., Udupa J. K., Babb J. S., Nyúl L. G., Kolson D. L. Brain atrophy in relapsing-remitting multiple sclerosis: fractional volumetric analysis of gray matter and white matter. Radiology. 2001 Sep;220(3):606–610. doi: 10.1148/radiol.2203001776. [DOI] [PubMed] [Google Scholar]
  15. Geurts J. J. G., Wolswijk G., Bö L., van der Valk P., Polman C. H., Troost D., Aronica E. Altered expression patterns of group I and II metabotropic glutamate receptors in multiple sclerosis. Brain. 2003 Jun 4;126(Pt 8):1755–1766. doi: 10.1093/brain/awg179. [DOI] [PubMed] [Google Scholar]
  16. Gilgun-Sherki Yossi, Panet Hana, Melamed Eldad, Offen Daniel. Riluzole suppresses experimental autoimmune encephalomyelitis: implications for the treatment of multiple sclerosis. Brain Res. 2003 Nov 7;989(2):196–204. doi: 10.1016/s0006-8993(03)03343-2. [DOI] [PubMed] [Google Scholar]
  17. Goldstein M. E., Sternberger N. H., Sternberger L. A. Phosphorylation protects neurofilaments against proteolysis. J Neuroimmunol. 1987 Mar;14(2):149–160. doi: 10.1016/0165-5728(87)90049-x. [DOI] [PubMed] [Google Scholar]
  18. Grant P., Pant H. C. Neurofilament protein synthesis and phosphorylation. J Neurocytol. 2000 Nov-Dec;29(11-12):843–872. doi: 10.1023/a:1010999509251. [DOI] [PubMed] [Google Scholar]
  19. Gveric D., Hanemaaijer R., Newcombe J., van Lent N. A., Sier C. F., Cuzner M. L. Plasminogen activators in multiple sclerosis lesions: implications for the inflammatory response and axonal damage. Brain. 2001 Oct;124(Pt 10):1978–1988. doi: 10.1093/brain/124.10.1978. [DOI] [PubMed] [Google Scholar]
  20. Gveric Djordje, Herrera Blanca, Petzold Axel, Lawrence Daniel A., Cuzner M. Louise. Impaired fibrinolysis in multiple sclerosis: a role for tissue plasminogen activator inhibitors. Brain. 2003 Jun 4;126(Pt 7):1590–1598. doi: 10.1093/brain/awg167. [DOI] [PubMed] [Google Scholar]
  21. Kalkers N. F., Bergers E., Castelijns J. A., van Walderveen M. A., Bot J. C., Adèr H. J., Polman C. H., Barkhof F. Optimizing the association between disability and biological markers in MS. Neurology. 2001 Oct 9;57(7):1253–1258. doi: 10.1212/wnl.57.7.1253. [DOI] [PubMed] [Google Scholar]
  22. Kapoor Raju, Davies Meirion, Blaker Paul A., Hall Susan M., Smith Kenneth J. Blockers of sodium and calcium entry protect axons from nitric oxide-mediated degeneration. Ann Neurol. 2003 Feb;53(2):174–180. doi: 10.1002/ana.10443. [DOI] [PubMed] [Google Scholar]
  23. Kornek B., Storch M. K., Weissert R., Wallstroem E., Stefferl A., Olsson T., Linington C., Schmidbauer M., Lassmann H. Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol. 2000 Jul;157(1):267–276. doi: 10.1016/S0002-9440(10)64537-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kuhlmann Tanja, Lingfeld Gueanelle, Bitsch Andreas, Schuchardt Jana, Brück Wolfgang. Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain. 2002 Oct;125(Pt 10):2202–2212. doi: 10.1093/brain/awf235. [DOI] [PubMed] [Google Scholar]
  25. Kurino M., Fukunaga K., Ushio Y., Miyamoto E. Activation of mitogen-activated protein kinase in cultured rat hippocampal neurons by stimulation of glutamate receptors. J Neurochem. 1995 Sep;65(3):1282–1289. doi: 10.1046/j.1471-4159.1995.65031282.x. [DOI] [PubMed] [Google Scholar]
  26. Kurtzke J. F. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983 Nov;33(11):1444–1452. doi: 10.1212/wnl.33.11.1444. [DOI] [PubMed] [Google Scholar]
  27. Lim E. T., Grant D., Pashenkov M., Keir G., Thompson E. J., Söderström M., Giovannoni G. Cerebrospinal fluid levels of brain specific proteins in optic neuritis. Mult Scler. 2004 Jun;10(3):261–265. doi: 10.1191/1352458504ms1020oa. [DOI] [PubMed] [Google Scholar]
  28. Losseff N. A., Wang L., Lai H. M., Yoo D. S., Gawne-Cain M. L., McDonald W. I., Miller D. H., Thompson A. J. Progressive cerebral atrophy in multiple sclerosis. A serial MRI study. Brain. 1996 Dec;119(Pt 6):2009–2019. doi: 10.1093/brain/119.6.2009. [DOI] [PubMed] [Google Scholar]
  29. Losseff N. A., Webb S. L., O'Riordan J. I., Page R., Wang L., Barker G. J., Tofts P. S., McDonald W. I., Miller D. H., Thompson A. J. Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain. 1996 Jun;119(Pt 3):701–708. doi: 10.1093/brain/119.3.701. [DOI] [PubMed] [Google Scholar]
  30. Lublin F. D., Reingold S. C. Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology. 1996 Apr;46(4):907–911. doi: 10.1212/wnl.46.4.907. [DOI] [PubMed] [Google Scholar]
  31. Lucchinetti C., Brück W., Parisi J., Scheithauer B., Rodriguez M., Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000 Jun;47(6):707–717. doi: 10.1002/1531-8249(200006)47:6<707::aid-ana3>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
  32. Lycke J. N., Karlsson J. E., Andersen O., Rosengren L. E. Neurofilament protein in cerebrospinal fluid: a potential marker of activity in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1998 Mar;64(3):402–404. doi: 10.1136/jnnp.64.3.402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Malmeström C., Haghighi S., Rosengren L., Andersen O., Lycke J. Neurofilament light protein and glial fibrillary acidic protein as biological markers in MS. Neurology. 2003 Dec 23;61(12):1720–1725. doi: 10.1212/01.wnl.0000098880.19793.b6. [DOI] [PubMed] [Google Scholar]
  34. McDonald W. I., Compston A., Edan G., Goodkin D., Hartung H. P., Lublin F. D., McFarland H. F., Paty D. W., Polman C. H., Reingold S. C. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol. 2001 Jul;50(1):121–127. doi: 10.1002/ana.1032. [DOI] [PubMed] [Google Scholar]
  35. McDonald W. I., Miller D. H., Barnes D. The pathological evolution of multiple sclerosis. Neuropathol Appl Neurobiol. 1992 Aug;18(4):319–334. doi: 10.1111/j.1365-2990.1992.tb00794.x. [DOI] [PubMed] [Google Scholar]
  36. McDonald W. I. Relapse, remission, and progression in multiple sclerosis. N Engl J Med. 2000 Nov 16;343(20):1486–1487. doi: 10.1056/NEJM200011163432010. [DOI] [PubMed] [Google Scholar]
  37. Pant H. C. Dephosphorylation of neurofilament proteins enhances their susceptibility to degradation by calpain. Biochem J. 1988 Dec 1;256(2):665–668. doi: 10.1042/bj2560665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Petzold A., Baker D., Pryce G., Keir G., Thompson E. J., Giovannoni G. Quantification of neurodegeneration by measurement of brain-specific proteins. J Neuroimmunol. 2003 May;138(1-2):45–48. doi: 10.1016/s0165-5728(03)00092-4. [DOI] [PubMed] [Google Scholar]
  39. Petzold A., Eikelenboom M. J., Gveric D., Keir G., Chapman M., Lazeron R. H. C., Cuzner M. L., Polman C. H., Uitdehaag B. M. J., Thompson E. J. Markers for different glial cell responses in multiple sclerosis: clinical and pathological correlations. Brain. 2002 Jul;125(Pt 7):1462–1473. doi: 10.1093/brain/awf165. [DOI] [PubMed] [Google Scholar]
  40. Petzold A., Keir G., Green A. J. E., Giovannoni G., Thompson E. J. A specific ELISA for measuring neurofilament heavy chain phosphoforms. J Immunol Methods. 2003 Jul;278(1-2):179–190. doi: 10.1016/s0022-1759(03)00189-3. [DOI] [PubMed] [Google Scholar]
  41. Pitt D., Werner P., Raine C. S. Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med. 2000 Jan;6(1):67–70. doi: 10.1038/71555. [DOI] [PubMed] [Google Scholar]
  42. Pryce Gareth, Ahmed Zubair, Hankey Deborah J. R., Jackson Samuel J., Croxford J. Ludovic, Pocock Jennifer M., Ledent Catherine, Petzold Axel, Thompson Alan J., Giovannoni Gavin. Cannabinoids inhibit neurodegeneration in models of multiple sclerosis. Brain. 2003 Jul 22;126(Pt 10):2191–2202. doi: 10.1093/brain/awg224. [DOI] [PubMed] [Google Scholar]
  43. Runmarker B., Andersen O. Prognostic factors in a multiple sclerosis incidence cohort with twenty-five years of follow-up. Brain. 1993 Feb;116(Pt 1):117–134. doi: 10.1093/brain/116.1.117. [DOI] [PubMed] [Google Scholar]
  44. Schwarzschild M. A., Cole R. L., Hyman S. E. Glutamate, but not dopamine, stimulates stress-activated protein kinase and AP-1-mediated transcription in striatal neurons. J Neurosci. 1997 May 15;17(10):3455–3466. doi: 10.1523/JNEUROSCI.17-10-03455.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Schwarzschild M. A., Cole R. L., Meyers M. A., Hyman S. E. Contrasting calcium dependencies of SAPK and ERK activations by glutamate in cultured striatal neurons. J Neurochem. 1999 Jun;72(6):2248–2255. doi: 10.1046/j.1471-4159.1999.0722248.x. [DOI] [PubMed] [Google Scholar]
  46. Semra Y. K., Seidi O. A., Sharief M. K. Heightened intrathecal release of axonal cytoskeletal proteins in multiple sclerosis is associated with progressive disease and clinical disability. J Neuroimmunol. 2002 Jan;122(1-2):132–139. doi: 10.1016/s0165-5728(01)00455-6. [DOI] [PubMed] [Google Scholar]
  47. Sternberger L. A., Sternberger N. H. Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci U S A. 1983 Oct;80(19):6126–6130. doi: 10.1073/pnas.80.19.6126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Trapp B. D., Peterson J., Ransohoff R. M., Rudick R., Mörk S., Bö L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med. 1998 Jan 29;338(5):278–285. doi: 10.1056/NEJM199801293380502. [DOI] [PubMed] [Google Scholar]
  49. Truyen L., van Waesberghe J. H., van Walderveen M. A., van Oosten B. W., Polman C. H., Hommes O. R., Adèr H. J., Barkhof F. Accumulation of hypointense lesions ("black holes") on T1 spin-echo MRI correlates with disease progression in multiple sclerosis. Neurology. 1996 Dec;47(6):1469–1476. doi: 10.1212/wnl.47.6.1469. [DOI] [PubMed] [Google Scholar]
  50. Waxman S. G. Demyelinating diseases--new pathological insights, new therapeutic targets. N Engl J Med. 1998 Jan 29;338(5):323–325. doi: 10.1056/NEJM199801293380610. [DOI] [PubMed] [Google Scholar]
  51. Waxman Stephen G. Nitric oxide and the axonal death cascade. Ann Neurol. 2003 Feb;53(2):150–153. doi: 10.1002/ana.10397. [DOI] [PubMed] [Google Scholar]
  52. Werner P., Pitt D., Raine C. S. Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Ann Neurol. 2001 Aug;50(2):169–180. doi: 10.1002/ana.1077. [DOI] [PubMed] [Google Scholar]
  53. Xia Z., Dudek H., Miranti C. K., Greenberg M. E. Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J Neurosci. 1996 Sep 1;16(17):5425–5436. doi: 10.1523/JNEUROSCI.16-17-05425.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Zhai Qiwei, Wang Jing, Kim Anna, Liu Qing, Watts Ryan, Hoopfer Eric, Mitchison Timothy, Luo Liqun, He Zhigang. Involvement of the ubiquitin-proteasome system in the early stages of wallerian degeneration. Neuron. 2003 Jul 17;39(2):217–225. doi: 10.1016/s0896-6273(03)00429-x. [DOI] [PubMed] [Google Scholar]
  55. van Waesberghe J. H., Kamphorst W., De Groot C. J., van Walderveen M. A., Castelijns J. A., Ravid R., Lycklama à Nijeholt G. J., van der Valk P., Polman C. H., Thompson A. J. Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability. Ann Neurol. 1999 Nov;46(5):747–754. doi: 10.1002/1531-8249(199911)46:5<747::aid-ana10>3.3.co;2-w. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES