Abstract
Background: Frontotemporal lobar degeneration (FTLD) may be inherited as an autosomal dominant disease. Studying patients "at risk" for developing FTLD can provide insights into the earliest onset and evolution of the disease.
Method: We carried out approximately annual clinical, MRI, and neuropsychological assessments on an asymptomatic 51 year old "at risk" family member from a family with FTLD associated with ubiquitin-positive and tau-negative inclusion bodies. We used non-linear (fluid) registration of serial MRI to determine areas undergoing significant regional atrophy at different stages of the disease.
Results: Over the first 26 months of the study, the patient remained asymptomatic, but subsequently developed progressive speech production difficulties, and latterly severe orofacial dyspraxia, dyscalculia, frontal executive impairment, and limb dyspraxia. Regional atrophy was present prior to the onset of symptoms, and was initially centred on the left dorsolateral prefrontal cortex and the left middle frontal gyrus. Latterly, there was increasing asymmetric left frontal and parietal atrophy. Imaging revealed excess and increasing global atrophy throughout the study. Neuropsychological evaluation revealed mild intellectual impairment prior to the onset of these clinical symptoms; frontal executive and left parietal impairment subsequently emerged, culminating in widespread cognitive impairment. Fluid registered MRI allowed the emerging atrophy patterns to be delineated.
Conclusion: We have demonstrated the onset and progressive pattern of in vivo atrophy in familial FTLD using fluid registered MRI and correlated this with the clinical features. Fluid registered MRI may be a useful technique in assessing patterns of focal atrophy in vivo and demonstrating the progression of degenerative diseases.
Full Text
The Full Text of this article is available as a PDF (169.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashworth A., Lloyd S., Brown J., Gydesen S., Sorensen S. A., Brun A., Englund E., Humphreys C., Housman D., Badura M. Molecular genetic characterisation of frontotemporal dementia on chromosome 3. Dement Geriatr Cogn Disord. 1999;10 (Suppl 1):93–101. doi: 10.1159/000051222. [DOI] [PubMed] [Google Scholar]
- Basun H., Almkvist O., Axelman K., Brun A., Campbell T. A., Collinge J., Forsell C., Froelich S., Wahlund L. O., Wetterberg L. Clinical characteristics of a chromosome 17-linked rapidly progressive familial frontotemporal dementia. Arch Neurol. 1997 May;54(5):539–544. doi: 10.1001/archneur.1997.00550170021010. [DOI] [PubMed] [Google Scholar]
- Bird T. D., Wijsman E. M., Nochlin D., Leehey M., Sumi S. M., Payami H., Poorkaj P., Nemens E., Rafkind M., Schellenberg G. D. Chromosome 17 and hereditary dementia: linkage studies in three non-Alzheimer families and kindreds with late-onset FAD. Neurology. 1997 Apr;48(4):949–954. doi: 10.1212/wnl.48.4.949. [DOI] [PubMed] [Google Scholar]
- Blank S. Catrin, Bird Helen, Turkheimer Federico, Wise Richard J. S. Speech production after stroke: the role of the right pars opercularis. Ann Neurol. 2003 Sep;54(3):310–320. doi: 10.1002/ana.10656. [DOI] [PubMed] [Google Scholar]
- Blank S. Catrin, Scott Sophie K., Murphy Kevin, Warburton Elizabeth, Wise Richard J. S. Speech production: Wernicke, Broca and beyond. Brain. 2002 Aug;125(Pt 8):1829–1838. doi: 10.1093/brain/awf191. [DOI] [PubMed] [Google Scholar]
- Burgess P. W., Shallice T. Response suppression, initiation and strategy use following frontal lobe lesions. Neuropsychologia. 1996 Apr;34(4):263–272. doi: 10.1016/0028-3932(95)00104-2. [DOI] [PubMed] [Google Scholar]
- Chan D., Fox N. C., Jenkins R., Scahill R. I., Crum W. R., Rossor M. N. Rates of global and regional cerebral atrophy in AD and frontotemporal dementia. Neurology. 2001 Nov 27;57(10):1756–1763. doi: 10.1212/wnl.57.10.1756. [DOI] [PubMed] [Google Scholar]
- Chan D., Fox N. C., Scahill R. I., Crum W. R., Whitwell J. L., Leschziner G., Rossor A. M., Stevens J. M., Cipolotti L., Rossor M. N. Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease. Ann Neurol. 2001 Apr;49(4):433–442. [PubMed] [Google Scholar]
- Crum W. R., Scahill R. I., Fox N. C. Automated hippocampal segmentation by regional fluid registration of serial MRI: validation and application in Alzheimer's disease. Neuroimage. 2001 May;13(5):847–855. doi: 10.1006/nimg.2001.0744. [DOI] [PubMed] [Google Scholar]
- Folstein M. F., Folstein S. E., McHugh P. R. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975 Nov;12(3):189–198. doi: 10.1016/0022-3956(75)90026-6. [DOI] [PubMed] [Google Scholar]
- Foster N. L., Wilhelmsen K., Sima A. A., Jones M. Z., D'Amato C. J., Gilman S. Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Conference Participants. Ann Neurol. 1997 Jun;41(6):706–715. doi: 10.1002/ana.410410606. [DOI] [PubMed] [Google Scholar]
- Fox N. C., Crum W. R., Scahill R. I., Stevens J. M., Janssen J. C., Rossor M. N. Imaging of onset and progression of Alzheimer's disease with voxel-compression mapping of serial magnetic resonance images. Lancet. 2001 Jul 21;358(9277):201–205. doi: 10.1016/S0140-6736(01)05408-3. [DOI] [PubMed] [Google Scholar]
- Fox N. C., Freeborough P. A. Brain atrophy progression measured from registered serial MRI: validation and application to Alzheimer's disease. J Magn Reson Imaging. 1997 Nov-Dec;7(6):1069–1075. doi: 10.1002/jmri.1880070620. [DOI] [PubMed] [Google Scholar]
- Fox N. C., Freeborough P. A., Rossor M. N. Visualisation and quantification of rates of atrophy in Alzheimer's disease. Lancet. 1996 Jul 13;348(9020):94–97. doi: 10.1016/s0140-6736(96)05228-2. [DOI] [PubMed] [Google Scholar]
- Fox N. C., Warrington E. K., Seiffer A. L., Agnew S. K., Rossor M. N. Presymptomatic cognitive deficits in individuals at risk of familial Alzheimer's disease. A longitudinal prospective study. Brain. 1998 Sep;121(Pt 9):1631–1639. doi: 10.1093/brain/121.9.1631. [DOI] [PubMed] [Google Scholar]
- Freeborough P. A., Fox N. C., Kitney R. I. Interactive algorithms for the segmentation and quantitation of 3-D MRI brain scans. Comput Methods Programs Biomed. 1997 May;53(1):15–25. doi: 10.1016/s0169-2607(97)01803-8. [DOI] [PubMed] [Google Scholar]
- Freeborough P. A., Fox N. C. Modeling brain deformations in Alzheimer disease by fluid registration of serial 3D MR images. J Comput Assist Tomogr. 1998 Sep-Oct;22(5):838–843. doi: 10.1097/00004728-199809000-00031. [DOI] [PubMed] [Google Scholar]
- Freeborough P. A., Fox N. C. The boundary shift integral: an accurate and robust measure of cerebral volume changes from registered repeat MRI. IEEE Trans Med Imaging. 1997 Oct;16(5):623–629. doi: 10.1109/42.640753. [DOI] [PubMed] [Google Scholar]
- Freeborough P. A., Woods R. P., Fox N. C. Accurate registration of serial 3D MR brain images and its application to visualizing change in neurodegenerative disorders. J Comput Assist Tomogr. 1996 Nov-Dec;20(6):1012–1022. doi: 10.1097/00004728-199611000-00030. [DOI] [PubMed] [Google Scholar]
- Geschwind D. H., Robidoux J., Alarcón M., Miller B. L., Wilhelmsen K. C., Cummings J. L., Nasreddine Z. S. Dementia and neurodevelopmental predisposition: cognitive dysfunction in presymptomatic subjects precedes dementia by decades in frontotemporal dementia. Ann Neurol. 2001 Dec;50(6):741–746. doi: 10.1002/ana.10024. [DOI] [PubMed] [Google Scholar]
- Gray Jeremy R., Chabris Christopher F., Braver Todd S. Neural mechanisms of general fluid intelligence. Nat Neurosci. 2003 Mar;6(3):316–322. doi: 10.1038/nn1014. [DOI] [PubMed] [Google Scholar]
- Hosler B. A., Siddique T., Sapp P. C., Sailor W., Huang M. C., Hossain A., Daube J. R., Nance M., Fan C., Kaplan J. Linkage of familial amyotrophic lateral sclerosis with frontotemporal dementia to chromosome 9q21-q22. JAMA. 2000 Oct 4;284(13):1664–1669. doi: 10.1001/jama.284.13.1664. [DOI] [PubMed] [Google Scholar]
- Hutton M., Lendon C. L., Rizzu P., Baker M., Froelich S., Houlden H., Pickering-Brown S., Chakraverty S., Isaacs A., Grover A. Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17. Nature. 1998 Jun 18;393(6686):702–705. doi: 10.1038/31508. [DOI] [PubMed] [Google Scholar]
- Jackson M., Warrington E. K. Arithmetic skills in patients with unilateral cerebral lesions. Cortex. 1986 Dec;22(4):611–620. doi: 10.1016/s0010-9452(86)80020-x. [DOI] [PubMed] [Google Scholar]
- Janssen J. C., Hall M., Fox N. C., Harvey R. J., Beck J., Dickinson A., Campbell T., Collinge J., Lantos P. L., Cipolotti L. Alzheimer's disease due to an intronic presenilin-1 (PSEN1 intron 4) mutation: A clinicopathological study. Brain. 2000 May;123(Pt 5):894–907. doi: 10.1093/brain/123.5.894. [DOI] [PubMed] [Google Scholar]
- Janssen J. C., Lantos P. L., Fox N. C., Harvey R. J., Beck J., Dickinson A., Campbell T. A., Collinge J., Hanger D. P., Cipolotti L. Autopsy-confirmed familial early-onset Alzheimer disease caused by the l153V presenilin 1 mutation. Arch Neurol. 2001 Jun;58(6):953–958. doi: 10.1001/archneur.58.6.953. [DOI] [PubMed] [Google Scholar]
- Lendon C. L., Lynch T., Norton J., McKeel D. W., Jr, Busfield F., Craddock N., Chakraverty S., Gopalakrishnan G., Shears S. D., Grimmett W. Hereditary dysphasic disinhibition dementia: a frontotemporal dementia linked to 17q21-22. Neurology. 1998 Jun;50(6):1546–1555. doi: 10.1212/wnl.50.6.1546. [DOI] [PubMed] [Google Scholar]
- McKenna P., Warrington E. K. Testing for nominal dysphasia. J Neurol Neurosurg Psychiatry. 1980 Sep;43(9):781–788. doi: 10.1136/jnnp.43.9.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McKhann G. M., Albert M. S., Grossman M., Miller B., Dickson D., Trojanowski J. Q., Work Group on Frontotemporal Dementia and Pick's Disease Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. Arch Neurol. 2001 Nov;58(11):1803–1809. doi: 10.1001/archneur.58.11.1803. [DOI] [PubMed] [Google Scholar]
- Nathaniel-James D. A., Frith C. D. The role of the dorsolateral prefrontal cortex: evidence from the effects of contextual constraint in a sentence completion task. Neuroimage. 2002 Aug;16(4):1094–1102. doi: 10.1006/nimg.2002.1167. [DOI] [PubMed] [Google Scholar]
- Neary D., Snowden J. S., Gustafson L., Passant U., Stuss D., Black S., Freedman M., Kertesz A., Robert P. H., Albert M. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998 Dec;51(6):1546–1554. doi: 10.1212/wnl.51.6.1546. [DOI] [PubMed] [Google Scholar]
- Nelson H. E. A modified card sorting test sensitive to frontal lobe defects. Cortex. 1976 Dec;12(4):313–324. doi: 10.1016/s0010-9452(76)80035-4. [DOI] [PubMed] [Google Scholar]
- Nelson H. E., O'Connell A. Dementia: the estimation of premorbid intelligence levels using the New Adult Reading Test. Cortex. 1978 Jun;14(2):234–244. doi: 10.1016/s0010-9452(78)80049-5. [DOI] [PubMed] [Google Scholar]
- Nestor Peter J., Graham Naida L., Fryer Tim D., Williams Guy B., Patterson Karalyn, Hodges John R. Progressive non-fluent aphasia is associated with hypometabolism centred on the left anterior insula. Brain. 2003 Aug 5;126(Pt 11):2406–2418. doi: 10.1093/brain/awg240. [DOI] [PubMed] [Google Scholar]
- Perry R. J., Hodges J. R. Differentiating frontal and temporal variant frontotemporal dementia from Alzheimer's disease. Neurology. 2000 Jun 27;54(12):2277–2284. doi: 10.1212/wnl.54.12.2277. [DOI] [PubMed] [Google Scholar]
- Poorkaj P., Bird T. D., Wijsman E., Nemens E., Garruto R. M., Anderson L., Andreadis A., Wiederholt W. C., Raskind M., Schellenberg G. D. Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol. 1998 Jun;43(6):815–825. doi: 10.1002/ana.410430617. [DOI] [PubMed] [Google Scholar]
- Rosso S. M., Kamphorst W., de Graaf B., Willemsen R., Ravid R., Niermeijer M. F., Spillantini M. G., Heutink P., van Swieten J. C. Familial frontotemporal dementia with ubiquitin-positive inclusions is linked to chromosome 17q21-22. Brain. 2001 Oct;124(Pt 10):1948–1957. doi: 10.1093/brain/124.10.1948. [DOI] [PubMed] [Google Scholar]
- Scahill Rachael I., Schott Jonathan M., Stevens John M., Rossor Martin N., Fox Nick C. Mapping the evolution of regional atrophy in Alzheimer's disease: unbiased analysis of fluid-registered serial MRI. Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4703–4707. doi: 10.1073/pnas.052587399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schott Jonathan M., Simon Jessica E., Fox Nick C., King Andrew P., Khan M. Nadeem, Cipolotti Lisa, Paviour Dominic C., Stevens John M., Rossor Martin N. Delineating the sites and progression of in vivo atrophy in multiple system atrophy using fluid-registered MRI. Mov Disord. 2003 Aug;18(8):955–958. doi: 10.1002/mds.10468. [DOI] [PubMed] [Google Scholar]
- Shallice T., Evans M. E. The involvement of the frontal lobes in cognitive estimation. Cortex. 1978 Jun;14(2):294–303. doi: 10.1016/s0010-9452(78)80055-0. [DOI] [PubMed] [Google Scholar]
- Spillantini M. G., Murrell J. R., Goedert M., Farlow M. R., Klug A., Ghetti B. Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7737–7741. doi: 10.1073/pnas.95.13.7737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stevens M., van Duijn C. M., Kamphorst W., de Knijff P., Heutink P., van Gool W. A., Scheltens P., Ravid R., Oostra B. A., Niermeijer M. F. Familial aggregation in frontotemporal dementia. Neurology. 1998 Jun;50(6):1541–1545. doi: 10.1212/wnl.50.6.1541. [DOI] [PubMed] [Google Scholar]
- Taubner R. W., Raymer A. M., Heilman K. M. Frontal-opercular aphasia. Brain Lang. 1999 Nov;70(2):240–261. doi: 10.1006/brln.1999.2157. [DOI] [PubMed] [Google Scholar]
- Whitwell J. L., Crum W. R., Watt H. C., Fox N. C. Normalization of cerebral volumes by use of intracranial volume: implications for longitudinal quantitative MR imaging. AJNR Am J Neuroradiol. 2001 Sep;22(8):1483–1489. [PMC free article] [PubMed] [Google Scholar]