Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2005 May;76(5):706–709. doi: 10.1136/jnnp.2004.039875

Homocysteine and related genetic polymorphisms in Down's syndrome IQ

J Gueant 1, G Anello 1, P Bosco 1, R Gueant-Rodriguez 1, A Romano 1, C Barone 1, P Gerard 1, C Romano 1
PMCID: PMC1739618  PMID: 15834031

Abstract

Objective: Down's syndrome (DS) is the most frequent genetic cause of Alzheimer-type dementia. Its metabolic phenotype involves an increased trans-sulphuration of homocysteine. The aim of the present study was to investigate the influence of homocysteinaemia (t-Hcys), folate, vitamin B12, and related polymorphisms on intelligence quotient (IQ) in DS.

Methods: The IQ of 131 patients with trisomy 21 from a specialist centre in Sicily was determined and classified according to DMS-IV. The effects of age, folate, vitamin B12, t-Hcys, and genetic polymorphisms on IQ were evaluated separately and in combination using regression analyses.

Results: IQ was significantly lower in DS patients with t-Hcys >7.5 µmol/l (median) and in those who were carriers of methylenetetrahydrofolate reductase (MTHFR) 677 T allele and of methylenetetrahydrofolate reductase 677 T and transcobalamin 776 G combined alleles (p = 0.0013, p = 0.0165, and p = 0.0074, respectively). The IQ correlated significantly with t-Hcys and folate in single and multiple regression analyses, independently of age. In addition, t-Hcys >9.6 µmol/l (upper quartile) was found to be associated with low IQ (<40, median of study group) with an odds ratio of 2.61 (p = 0.0203). The odds ratio was increased by threefold in carriers of MTHFR 677T allele. The MTHFR 677T allele/transcobalamin 776 G allele combination was associated with the risk of DS patients to have an IQ less that the median with an odds ratio of 2.68 (95% CI 1.26 to 5.70, p = 0.0104).

Conclusion: This study found evidence of an association between t-Hcys and MTHFR 677 T and transcobalamin 776 G alleles with IQ in patients with DS. The association may be related to a defective remethylation of homocysteine, affecting IQ.

Full Text

The Full Text of this article is available as a PDF (77.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anello Guido, Guéant-Rodríguez Rosa-Maria, Bosco Paolo, Guéant Jean-Louis, Romano Antonino, Namour Bernard, Spada Rosario, Caraci Filippo, Pourié Gregory, Daval Jean-Luc. Homocysteine and methylenetetrahydrofolate reductase polymorphism in Alzheimer's disease. Neuroreport. 2004 Apr 9;15(5):859–861. doi: 10.1097/00001756-200404090-00025. [DOI] [PubMed] [Google Scholar]
  2. Bell I. R., Edman J. S., Selhub J., Morrow F. D., Marby D. W., Kayne H. L., Cole J. O. Plasma homocysteine in vascular disease and in nonvascular dementia of depressed elderly people. Acta Psychiatr Scand. 1992 Nov;86(5):386–390. doi: 10.1111/j.1600-0447.1992.tb03285.x. [DOI] [PubMed] [Google Scholar]
  3. Bosco P., Guéant-Rodríguez R-M, Anello G., Romano A., Namour B., Spada R. S., Caraci F., Tringali G., Ferri R., Guéant J-L. Association of IL-1 RN*2 allele and methionine synthase 2756 AA genotype with dementia severity of sporadic Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2004 Jul;75(7):1036–1038. doi: 10.1136/jnnp.2003.025866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bosco Paolo, Guéant-Rodriguez Rosa-Maria, Anello Guido, Barone Concetta, Namour Farès, Caraci Filippo, Romano Antonino, Romano Corrado, Guéant Jean-Louis. Methionine synthase (MTR) 2756 (A --> G) polymorphism, double heterozygosity methionine synthase 2756 AG/methionine synthase reductase (MTRR) 66 AG, and elevated homocysteinemia are three risk factors for having a child with Down syndrome. Am J Med Genet A. 2003 Sep 1;121A(3):219–224. doi: 10.1002/ajmg.a.20234. [DOI] [PubMed] [Google Scholar]
  5. Brattström L., Wilcken D. E., Ohrvik J., Brudin L. Common methylenetetrahydrofolate reductase gene mutation leads to hyperhomocysteinemia but not to vascular disease: the result of a meta-analysis. Circulation. 1998 Dec 8;98(23):2520–2526. doi: 10.1161/01.cir.98.23.2520. [DOI] [PubMed] [Google Scholar]
  6. Castro Rita, Rivera Isabel, Struys Eduard A., Jansen Erwin E. W., Ravasco Paula, Camilo Maria Ermelinda, Blom Henk J., Jakobs Cornelis, Tavares de Almeida Isabel. Increased homocysteine and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease. Clin Chem. 2003 Aug;49(8):1292–1296. doi: 10.1373/49.8.1292. [DOI] [PubMed] [Google Scholar]
  7. Chadefaux B., Ceballos I., Hamet M., Coude M., Poissonnier M., Kamoun P., Allard D. Is absence of atheroma in Down syndrome due to decreased homocysteine levels? Lancet. 1988 Sep 24;2(8613):741–741. doi: 10.1016/s0140-6736(88)90211-5. [DOI] [PubMed] [Google Scholar]
  8. Chapman J., Wang N., Treves T. A., Korczyn A. D., Bornstein N. M. ACE, MTHFR, factor V Leiden, and APOE polymorphisms in patients with vascular and Alzheimer's dementia. Stroke. 1998 Jul;29(7):1401–1404. doi: 10.1161/01.str.29.7.1401. [DOI] [PubMed] [Google Scholar]
  9. Clarke R., Smith A. D., Jobst K. A., Refsum H., Sutton L., Ueland P. M. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch Neurol. 1998 Nov;55(11):1449–1455. doi: 10.1001/archneur.55.11.1449. [DOI] [PubMed] [Google Scholar]
  10. Corder E. H., Saunders A. M., Strittmatter W. J., Schmechel D. E., Gaskell P. C., Small G. W., Roses A. D., Haines J. L., Pericak-Vance M. A. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science. 1993 Aug 13;261(5123):921–923. doi: 10.1126/science.8346443. [DOI] [PubMed] [Google Scholar]
  11. Drouet B., Fifre A., Pinçon-Raymond M., Vandekerckhove J., Rosseneu M., Guéant J. L., Chambaz J., Pillot T. ApoE protects cortical neurones against neurotoxicity induced by the non-fibrillar C-terminal domain of the amyloid-beta peptide. J Neurochem. 2001 Jan;76(1):117–127. doi: 10.1046/j.1471-4159.2001.00047.x. [DOI] [PubMed] [Google Scholar]
  12. Friso Simonetta, Choi Sang-Woon, Girelli Domenico, Mason Joel B., Dolnikowski Gregory G., Bagley Pamela J., Olivieri Oliviero, Jacques Paul F., Rosenberg Irwin H., Corrocher Roberto. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci U S A. 2002 Apr 2;99(8):5606–5611. doi: 10.1073/pnas.062066299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gericke G. S., Hesseling P. B., Brink S., Tiedt F. C. Leucocyte ultrastructure and folate metabolism in Down's syndrome. S Afr Med J. 1977 Mar 19;51(12):369–374. [PubMed] [Google Scholar]
  14. Hassold T. J., Burrage L. C., Chan E. R., Judis L. M., Schwartz S., James S. J., Jacobs P. A., Thomas N. S. Maternal folate polymorphisms and the etiology of human nondisjunction. Am J Hum Genet. 2001 Jul 5;69(2):434–439. doi: 10.1086/321971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hattori M., Fujiyama A., Taylor T. D., Watanabe H., Yada T., Park H. S., Toyoda A., Ishii K., Totoki Y., Choi D. K. The DNA sequence of human chromosome 21. Nature. 2000 May 18;405(6784):311–319. doi: 10.1038/35012518. [DOI] [PubMed] [Google Scholar]
  16. Hyman B. T., West H. L., Rebeck G. W., Buldyrev S. V., Mantegna R. N., Ukleja M., Havlin S., Stanley H. E. Quantitative analysis of senile plaques in Alzheimer disease: observation of log-normal size distribution and molecular epidemiology of differences associated with apolipoprotein E genotype and trisomy 21 (Down syndrome). Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3586–3590. doi: 10.1073/pnas.92.8.3586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. James S. J., Pogribna M., Pogribny I. P., Melnyk S., Hine R. J., Gibson J. B., Yi P., Tafoya D. L., Swenson D. H., Wilson V. L. Abnormal folate metabolism and mutation in the methylenetetrahydrofolate reductase gene may be maternal risk factors for Down syndrome. Am J Clin Nutr. 1999 Oct;70(4):495–501. doi: 10.1093/ajcn/70.4.495. [DOI] [PubMed] [Google Scholar]
  18. LeMaire-Adkins R., Radke K., Hunt P. A. Lack of checkpoint control at the metaphase/anaphase transition: a mechanism of meiotic nondisjunction in mammalian females. J Cell Biol. 1997 Dec 29;139(7):1611–1619. doi: 10.1083/jcb.139.7.1611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lejeune J., Rethoré M. O., de Blois M. C., Maunoury-Burolla C., Mir M., Nicolle L., Borowy F., Borghi E., Recan D. Métabolisme des monocarbones et trisomie 21: sensibilité au méthotrexate. Ann Genet. 1986;29(1):16–19. [PubMed] [Google Scholar]
  20. MacGregor J. T., Wehr C. M., Hiatt R. A., Peters B., Tucker J. D., Langlois R. G., Jacob R. A., Jensen R. H., Yager J. W., Shigenaga M. K. 'Spontaneous' genetic damage in man: evaluation of interindividual variability, relationship among markers of damage, and influence of nutritional status. Mutat Res. 1997 Jun 9;377(1):125–135. doi: 10.1016/s0027-5107(97)00070-5. [DOI] [PubMed] [Google Scholar]
  21. Mattson Mark P., Shea Thomas B. Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci. 2003 Mar;26(3):137–146. doi: 10.1016/S0166-2236(03)00032-8. [DOI] [PubMed] [Google Scholar]
  22. McCaddon A., Blennow K., Hudson P., Regland B., Hill D. Transcobalamin polymorphism and homocysteine. Blood. 2001 Dec 1;98(12):3497–3499. doi: 10.1182/blood.v98.12.3497. [DOI] [PubMed] [Google Scholar]
  23. McCaddon A., Davies G., Hudson P., Tandy S., Cattell H. Total serum homocysteine in senile dementia of Alzheimer type. Int J Geriatr Psychiatry. 1998 Apr;13(4):235–239. doi: 10.1002/(sici)1099-1166(199804)13:4<235::aid-gps761>3.0.co;2-8. [DOI] [PubMed] [Google Scholar]
  24. Miller Joshua W., Green Ralph, Ramos Marisa I., Allen Lindsay H., Mungas Dan M., Jagust William J., Haan Mary N. Homocysteine and cognitive function in the Sacramento Area Latino Study on Aging. Am J Clin Nutr. 2003 Sep;78(3):441–447. doi: 10.1093/ajcn/78.3.441. [DOI] [PubMed] [Google Scholar]
  25. Miller Joshua W., Ramos Marisa I., Garrod Marjorie G., Flynn Margaret A., Green Ralph. Transcobalamin II 775G>C polymorphism and indices of vitamin B12 status in healthy older adults. Blood. 2002 Jul 15;100(2):718–720. doi: 10.1182/blood-2002-01-0209. [DOI] [PubMed] [Google Scholar]
  26. Namour F., Olivier J., Abdelmouttaleb I., Adjalla C., Debard R., Salvat C., Guéant J. Transcobalamin codon 259 polymorphism in HT-29 and Caco-2 cells and in Caucasians: relation to transcobalamin and homocysteine concentration in blood. Blood. 2001 Feb 15;97(4):1092–1098. doi: 10.1182/blood.v97.4.1092. [DOI] [PubMed] [Google Scholar]
  27. Nilsson K., Gustafson L., Hultberg B. The plasma homocysteine concentration is better than that of serum methylmalonic acid as a marker for sociopsychological performance in a psychogeriatric population. Clin Chem. 2000 May;46(5):691–696. [PubMed] [Google Scholar]
  28. Nishiyama M., Kato Y., Hashimoto M., Yukawa S., Omori K. Apolipoprotein E, methylenetetrahydrofolate reductase (MTHFR) mutation and the risk of senile dementia--an epidemiological study using the polymerase chain reaction (PCR) method. J Epidemiol. 2000 May;10(3):163–172. doi: 10.2188/jea.10.163. [DOI] [PubMed] [Google Scholar]
  29. Pogribna M., Melnyk S., Pogribny I., Chango A., Yi P., James S. J. Homocysteine metabolism in children with Down syndrome: in vitro modulation. Am J Hum Genet. 2001 Jun 5;69(1):88–95. doi: 10.1086/321262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pollak R. D., Pollak A., Idelson M., Bejarano-Achache I., Doron D., Blumenfeld A. The C677T mutation in the methylenetetrahydrofolate reductase (MTHFR) gene and vascular dementia. J Am Geriatr Soc. 2000 Jun;48(6):664–668. doi: 10.1111/j.1532-5415.2000.tb04725.x. [DOI] [PubMed] [Google Scholar]
  31. Riggs K. M., Spiro A., 3rd, Tucker K., Rush D. Relations of vitamin B-12, vitamin B-6, folate, and homocysteine to cognitive performance in the Normative Aging Study. Am J Clin Nutr. 1996 Mar;63(3):306–314. doi: 10.1093/ajcn/63.3.306. [DOI] [PubMed] [Google Scholar]
  32. Seshadri Sudha, Beiser Alexa, Selhub Jacob, Jacques Paul F., Rosenberg Irwin H., D'Agostino Ralph B., Wilson Peter W. F., Wolf Philip A. Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. N Engl J Med. 2002 Feb 14;346(7):476–483. doi: 10.1056/NEJMoa011613. [DOI] [PubMed] [Google Scholar]
  33. Tassone F., Lucas R., Slavov D., Kavsan V., Crnic L., Gardiner K. Gene expression relevant to Down syndrome: problems and approaches. J Neural Transm Suppl. 1999;57:179–195. doi: 10.1007/978-3-7091-6380-1_11. [DOI] [PubMed] [Google Scholar]
  34. Ueland P. M., Hustad S., Schneede J., Refsum H., Vollset S. E. Biological and clinical implications of the MTHFR C677T polymorphism. Trends Pharmacol Sci. 2001 Apr;22(4):195–201. doi: 10.1016/s0165-6147(00)01675-8. [DOI] [PubMed] [Google Scholar]
  35. Ueland P. M., Refsum H., Christensen B. Methotrexate sensitivity in Down's syndrome: a hypothesis. Cancer Chemother Pharmacol. 1990;25(5):384–386. doi: 10.1007/BF00686245. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES