Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 May;64(5):1565–1568. doi: 10.1128/iai.64.5.1565-1568.1996

Coordinate induction of two antibiotic genes in tracheal epithelial cells exposed to the inflammatory mediators lipopolysaccharide and tumor necrosis factor alpha.

J P Russell 1, G Diamond 1, A P Tarver 1, T F Scanlin 1, C L Bevins 1
PMCID: PMC173962  PMID: 8613361

Abstract

Peptides with potent broad-spectrum antibiotic activity have been identified in many animal species. Recent investigations have demonstrated that epithelial cells are a site of antibiotic peptide expression, suggesting that these peptides contribute to host defense at mucosal surfaces. Expression of tracheal antimicrobial peptide (TAP), a member of the beta-defensin family of peptides, is inducible in cultured tracheal epithelial cells (TEC) upon challenge with bacterial lipopolysaccharide (LPS) (G. Diamond, J.P. Russell, and C.L. Bevins, Proc. Natl. Acad. Sci. USA, in press). In this study, an anchored reverse transcriptase PCR strategy was used to determine if TAP was the sole beta-defensin isoform expressed upon stimulation of the cells with LPS. In addition to TAP, a second class of cDNA clones which encoded lingual antimicrobial peptide (LAP), a beta-defensin peptide recently isolated from a different mucosal site, the bovine tongue, was identified (B.S. Schonwetter, E.D. Stolzenberg, and M. Zasloff, Science 267:1645-1648, 1995). Northern (RNA) blot analysis demonstrated in vivo expression of LAP mRNA in tracheal mucosa. Levels of LAP mRNA were higher in cultured TEC challenged with either LPS or tumor necrosis factor alpha than in control cells. Thus, a response of TEC exposed to inflammatory mediators is induction of antibiotic-encoding genes, including both TAP and LAP. This work complements the in vivo studies of Schonwetter et al. (cited above), which showed elevated levels of LAP mRNA in squamous epithelial cells of the tongue near sites of tissue injury and inflammation, by suggesting possible mediators of the in vivo observation. Together these lines of investigations support the hypothesis that inducible expression of endogenous antibiotic peptides by inflammatory mediators characterizes local defense of mammalian mucosal surfaces.

Full Text

The Full Text of this article is available as a PDF (301.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bevins C. L. Antimicrobial peptides as agents of mucosal immunity. Ciba Found Symp. 1994;186:250–269. doi: 10.1002/9780470514658.ch15. [DOI] [PubMed] [Google Scholar]
  2. Boman H. G. Peptide antibiotics and their role in innate immunity. Annu Rev Immunol. 1995;13:61–92. doi: 10.1146/annurev.iy.13.040195.000425. [DOI] [PubMed] [Google Scholar]
  3. Diamond G., Bevins C. L. Endotoxin upregulates expression of an antimicrobial peptide gene in mammalian airway epithelial cells. Chest. 1994 Mar;105(3 Suppl):51S–52S. doi: 10.1378/chest.105.3_supplement.51s. [DOI] [PubMed] [Google Scholar]
  4. Diamond G., Jones D. E., Bevins C. L. Airway epithelial cells are the site of expression of a mammalian antimicrobial peptide gene. Proc Natl Acad Sci U S A. 1993 May 15;90(10):4596–4600. doi: 10.1073/pnas.90.10.4596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Diamond G., Zasloff M., Eck H., Brasseur M., Maloy W. L., Bevins C. L. Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3952–3956. doi: 10.1073/pnas.88.9.3952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eisenhauer P. B., Harwig S. S., Lehrer R. I. Cryptdins: antimicrobial defensins of the murine small intestine. Infect Immun. 1992 Sep;60(9):3556–3565. doi: 10.1128/iai.60.9.3556-3565.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Frohman M. A., Dush M. K., Martin G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8998–9002. doi: 10.1073/pnas.85.23.8998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jones D. E., Bevins C. L. Paneth cells of the human small intestine express an antimicrobial peptide gene. J Biol Chem. 1992 Nov 15;267(32):23216–23225. [PubMed] [Google Scholar]
  9. Kishimoto T. Cancer due to asbestos exposure. Chest. 1992 Jan;101(1):58–63. doi: 10.1378/chest.101.1.58. [DOI] [PubMed] [Google Scholar]
  10. Lehrer R. I., Ganz T., Selsted M. E. Oxygen-independent bactericidal systems. Mechanisms and disorders. Hematol Oncol Clin North Am. 1988 Mar;2(1):159–169. [PubMed] [Google Scholar]
  11. Martin E., Ganz T., Lehrer R. I. Defensins and other endogenous peptide antibiotics of vertebrates. J Leukoc Biol. 1995 Aug;58(2):128–136. doi: 10.1002/jlb.58.2.128. [DOI] [PubMed] [Google Scholar]
  12. Ouellette A. J., Greco R. M., James M., Frederick D., Naftilan J., Fallon J. T. Developmental regulation of cryptdin, a corticostatin/defensin precursor mRNA in mouse small intestinal crypt epithelium. J Cell Biol. 1989 May;108(5):1687–1695. doi: 10.1083/jcb.108.5.1687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schonwetter B. S., Stolzenberg E. D., Zasloff M. A. Epithelial antibiotics induced at sites of inflammation. Science. 1995 Mar 17;267(5204):1645–1648. doi: 10.1126/science.7886453. [DOI] [PubMed] [Google Scholar]
  15. Selsted M. E., Miller S. I., Henschen A. H., Ouellette A. J. Enteric defensins: antibiotic peptide components of intestinal host defense. J Cell Biol. 1992 Aug;118(4):929–936. doi: 10.1083/jcb.118.4.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Selsted M. E., Tang Y. Q., Morris W. L., McGuire P. A., Novotny M. J., Smith W., Henschen A. H., Cullor J. S. Purification, primary structures, and antibacterial activities of beta-defensins, a new family of antimicrobial peptides from bovine neutrophils. J Biol Chem. 1993 Mar 25;268(9):6641–6648. [PubMed] [Google Scholar]
  17. Wu R., Nolan E., Turner C. Expression of tracheal differentiated functions in serum-free hormone-supplemented medium. J Cell Physiol. 1985 Nov;125(2):167–181. doi: 10.1002/jcp.1041250202. [DOI] [PubMed] [Google Scholar]
  18. Zasloff M. Antibiotic peptides as mediators of innate immunity. Curr Opin Immunol. 1992 Feb;4(1):3–7. doi: 10.1016/0952-7915(92)90115-u. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES