Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 May;64(5):1577–1581. doi: 10.1128/iai.64.5.1577-1581.1996

Colony-stimulating factor 1-dependent resident macrophages play a regulatory role in fighting Escherichia coli fecal peritonitis.

W Wiktor-Jedrzejczak 1, B Dzwigala 1, M Szperl 1, M Maruszynski 1, E Urbanowska 1, P Szwech 1
PMCID: PMC173964  PMID: 8613363

Abstract

Osteopetrotic op/op mice have less than 5% of the normal number of macrophages in the peritoneal cavity (W. Wiktor-Jedrzejczak, A. Ahmed, C. Szczylik, and R.R. Skelly, J. Exp. Med. 156:1516-1527, 1982). Fecal peritonitis was induced by intraperitoneal injection of 0.5 ml of 5% autoclaved feces in saline along with Escherichia coli grown from feces of mice of the same colony and added in doses ranging between 10 and 10(6) CFU. Such infection led to a septic shock and either was lethal within 24 h or became cured without additional treatment of the mice. The op/op mice survived administration of 30-times-smaller doses of bacteria compared with their normal littermates. Analysis of the kinetics of cellular changes in the peritoneal cavity associated with such infection revealed that this increased susceptibility of macrophage-deficient mice cannot be explained by a direct role of macrophages in combating the infection. Instead, it appeared that the increased susceptibility to fatal fecal peritonitis was most likely due to delayed and impaired recruitment of neutrophils to the site of infection in mutant mice. The increased susceptibility of the op/op mice to E. coli fecal peritonitis was not due to their possible increased sensitivity to endotoxin, since the mutant mice tolerated lipopolysaccharide doses more than twice those tolerated by control littermates. On the other hand, their susceptibility to exogenous tumor necrosis factor alpha and interleukin-1 alpha was increased. Both mutant op/op and control mice were able to survive secondary challenge with 10(6) E. coli (administered along with feces) lethal for both types of mice on primary challenge. These data suggest that colony-stimulating factor 1-dependent resident peritoneal macrophages play a role in controlling primary infection by recruiting neutrophils and are not required for efficient response to secondary infection.

Full Text

The Full Text of this article is available as a PDF (276.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson R., Tranberg K. G., Alwmark A., Bengmark S. Factors influencing the outcome of E. coli peritonitis in rats. Acta Chir Scand. 1989 Mar;155(3):155–157. [PubMed] [Google Scholar]
  2. Beutler B., Milsark I. W., Cerami A. C. Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science. 1985 Aug 30;229(4716):869–871. doi: 10.1126/science.3895437. [DOI] [PubMed] [Google Scholar]
  3. Cecchini M. G., Dominguez M. G., Mocci S., Wetterwald A., Felix R., Fleisch H., Chisholm O., Hofstetter W., Pollard J. W., Stanley E. R. Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse. Development. 1994 Jun;120(6):1357–1372. doi: 10.1242/dev.120.6.1357. [DOI] [PubMed] [Google Scholar]
  4. Cross A. S., Opal S. M., Sadoff J. C., Gemski P. Choice of bacteria in animal models of sepsis. Infect Immun. 1993 Jul;61(7):2741–2747. doi: 10.1128/iai.61.7.2741-2747.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dunn D. L. Gram-negative bacterial sepsis and sepsis syndrome. Surg Clin North Am. 1994 Jun;74(3):621–635. [PubMed] [Google Scholar]
  6. Matlow A. G., Bohnen J. M., Nohr C., Christou N., Meakins J. Pathogenicity of enterococci in a rat model of fecal peritonitis. J Infect Dis. 1989 Jul;160(1):142–145. doi: 10.1093/infdis/160.1.142. [DOI] [PubMed] [Google Scholar]
  7. Miller M. D., Krangel M. S. Biology and biochemistry of the chemokines: a family of chemotactic and inflammatory cytokines. Crit Rev Immunol. 1992;12(1-2):17–46. [PubMed] [Google Scholar]
  8. Mortensen R. F., Shapiro J., Lin B. F., Douches S., Neta R. Interaction of recombinant IL-1 and recombinant tumor necrosis factor in the induction of mouse acute phase proteins. J Immunol. 1988 Apr 1;140(7):2260–2266. [PubMed] [Google Scholar]
  9. Naito M., Hayashi S., Yoshida H., Nishikawa S., Shultz L. D., Takahashi K. Abnormal differentiation of tissue macrophage populations in 'osteopetrosis' (op) mice defective in the production of macrophage colony-stimulating factor. Am J Pathol. 1991 Sep;139(3):657–667. [PMC free article] [PubMed] [Google Scholar]
  10. Ohlsson K., Björk P., Bergenfeldt M., Hageman R., Thompson R. C. Interleukin-1 receptor antagonist reduces mortality from endotoxin shock. Nature. 1990 Dec 6;348(6301):550–552. doi: 10.1038/348550a0. [DOI] [PubMed] [Google Scholar]
  11. Sipe J. D., Vogel S. N., Ryan J. L., McAdam K. P., Rosenstreich D. L. Detection of a mediator derived from endotoxin-stimulated macrohpages that induces the acute phase serum amyloid A response in mice. J Exp Med. 1979 Sep 19;150(3):597–606. doi: 10.1084/jem.150.3.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Szperl M., Ansari A. A., Urbanowska E., Szwech P., Kalinski P., Wiktor-Jedrzejczak W. Increased resistance of CSF-1-deficient, macrophage-deficient, TNF alpha-deficient, and IL-1 alpha-deficient op/op mice to endotoxin. Ann N Y Acad Sci. 1995 Jul 21;762:499–501. [PubMed] [Google Scholar]
  13. Vassalli P. The pathophysiology of tumor necrosis factors. Annu Rev Immunol. 1992;10:411–452. doi: 10.1146/annurev.iy.10.040192.002211. [DOI] [PubMed] [Google Scholar]
  14. Wiktor-Jedrzejczak W. W., Ahmed A., Szczylik C., Skelly R. R. Hematological characterization of congenital osteopetrosis in op/op mouse. Possible mechanism for abnormal macrophage differentiation. J Exp Med. 1982 Nov 1;156(5):1516–1527. doi: 10.1084/jem.156.5.1516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wiktor-Jedrzejczak W., Ansari A. A., Szperl M., Urbanowska E. Distinct in vivo functions of two macrophage subpopulations as evidenced by studies using macrophage-deficient op/op mouse. Eur J Immunol. 1992 Jul;22(7):1951–1954. doi: 10.1002/eji.1830220743. [DOI] [PubMed] [Google Scholar]
  16. Wiktor-Jedrzejczak W., Bartocci A., Ferrante A. W., Jr, Ahmed-Ansari A., Sell K. W., Pollard J. W., Stanley E. R. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4828–4832. doi: 10.1073/pnas.87.12.4828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wiktor-Jedrzejczak W., Ratajczak M. Z., Ptasznik A., Sell K. W., Ahmed-Ansari A., Ostertag W. CSF-1 deficiency in the op/op mouse has differential effects on macrophage populations and differentiation stages. Exp Hematol. 1992 Sep;20(8):1004–1010. [PubMed] [Google Scholar]
  18. Wiktor-Jedrzejczak W., Urbanowska E., Aukerman S. L., Pollard J. W., Stanley E. R., Ralph P., Ansari A. A., Sell K. W., Szperl M. Correction by CSF-1 of defects in the osteopetrotic op/op mouse suggests local, developmental, and humoral requirements for this growth factor. Exp Hematol. 1991 Nov;19(10):1049–1054. [PubMed] [Google Scholar]
  19. Witmer-Pack M. D., Hughes D. A., Schuler G., Lawson L., McWilliam A., Inaba K., Steinman R. M., Gordon S. Identification of macrophages and dendritic cells in the osteopetrotic (op/op) mouse. J Cell Sci. 1993 Apr;104(Pt 4):1021–1029. doi: 10.1242/jcs.104.4.1021. [DOI] [PubMed] [Google Scholar]
  20. Yoshida H., Hayashi S., Kunisada T., Ogawa M., Nishikawa S., Okamura H., Sudo T., Shultz L. D., Nishikawa S. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature. 1990 May 31;345(6274):442–444. doi: 10.1038/345442a0. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES