Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 May;64(5):1582–1588. doi: 10.1128/iai.64.5.1582-1588.1996

Asialo GM1 is a receptor for Pseudomonas aeruginosa adherence to regenerating respiratory epithelial cells.

S de Bentzmann 1, P Roger 1, F Dupuit 1, O Bajolet-Laudinat 1, C Fuchey 1, M C Plotkowski 1, E Puchelle 1
PMCID: PMC173965  PMID: 8613364

Abstract

We investigated the implication of asialo GM1 as an epithelial receptor in the increased Pseudomonas aeruginosa affinity for regenerating respiratory epithelial cells from cystic fibrosis (CF) and non-CF patients. Human respiratory epithelial cells were obtained from nasal polyps of non-CF subjects and of CF patients homozygous for the delta F 508 transmembrane conductance regulator protein (CFTR) mutation and cultured according to the explant-outgrowth model. At the periphery of the outgrowth, regenerating respiratory epithelial cells spreading over the collagen I matrix with lamellipodia were observed, characteristic of respiratory epithelial wound repair after injury. P aeruginosa adherence to regenerating respiratory epithelial cells was found to be significantly greater in the delta F 508 homozygous CF group than in the non-CF group (P < 0.001). In vitro competitive binding inhibition assays performed with rabbit polyclonal antibody against asialo GM1 demonstrated that blocking asialo GM1 reduces P. aeruginosa adherence to regenerating respiratory epithelial cells in delta F 508 homozygous cultures (P < 0.001) as well as in non-CF cultures (P < 0.001). Blocking of asialo GM1 was significantly more efficient in CF patients than in non-CF subjects (P < 0.05). Distribution of asialo GM1 as determined by preembedding labelling and immunoelectron microscopy clearly demonstrated the specific apical membrane expression of asialo GM1 by regenerating respiratory epithelial cells, whereas other cell phenotypes did not apically express asialo GM1. These results demonstrate that (i) asialo GM1 is an apical membrane receptor for P. aeruginosa expressed at the surface of CF and non-CF regenerating respiratory epithelial cells and (ii) asialo GM1 is specifically recovered in regenerating respiratory epithelium. These results suggest that in CF, epithelial repair represents the major event which exposes asialo GM1 for P. aeruginosa adherence.

Full Text

The Full Text of this article is available as a PDF (569.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barasch J., Kiss B., Prince A., Saiman L., Gruenert D., al-Awqati Q. Defective acidification of intracellular organelles in cystic fibrosis. Nature. 1991 Jul 4;352(6330):70–73. doi: 10.1038/352070a0. [DOI] [PubMed] [Google Scholar]
  2. Chevillard M., Hinnrasky J., Zahm J. M., Plotkowski M. C., Puchelle E. Proliferation, differentiation and ciliary beating of human respiratory ciliated cells in primary culture. Cell Tissue Res. 1991 Apr;264(1):49–55. doi: 10.1007/BF00305721. [DOI] [PubMed] [Google Scholar]
  3. Colliot G., de Bentzmann S., Plotkowski M. C., Lebonvallet S., Puchelle E., Bonnet N. Quantitative analysis and cartography in scanning electron microscopy: application to the study of bacterial adhesion to respiratory epithelium. Microsc Res Tech. 1993 Apr 15;24(6):527–536. doi: 10.1002/jemt.1070240610. [DOI] [PubMed] [Google Scholar]
  4. Dupuit F., Zahm J. M., Pierrot D., Brezillon S., Bonnet N., Imler J. L., Pavirani A., Puchelle E. Regenerating cells in human airway surface epithelium represent preferential targets for recombinant adenovirus. Hum Gene Ther. 1995 Sep;6(9):1185–1193. doi: 10.1089/hum.1995.6.9-1185. [DOI] [PubMed] [Google Scholar]
  5. Enzan H., Hiroi M., Saibara T., Onishi S., Yamamoto Y., Yamamoto H., Hara H. Immunoelectron microscopic identification of asialo GM1-positive cells in adult rat liver. Virchows Arch B Cell Pathol Incl Mol Pathol. 1991;60(6):389–398. doi: 10.1007/BF02899571. [DOI] [PubMed] [Google Scholar]
  6. Fuerst J. A., Hayward A. C. Surface appendages similar to fimbriae (pili) on pseudomonas species. J Gen Microbiol. 1969 Oct;58(2):227–237. doi: 10.1099/00221287-58-2-227. [DOI] [PubMed] [Google Scholar]
  7. Gillard B. K., Thurmon L. T., Harrell R. G., Capetanaki Y., Saito M., Yu R. K., Marcus D. M. Biosynthesis of glycosphingolipids is reduced in the absence of a vimentin intermediate filament network. J Cell Sci. 1994 Dec;107(Pt 12):3545–3555. doi: 10.1242/jcs.107.12.3545. [DOI] [PubMed] [Google Scholar]
  8. Girod de Bentzmann S., Bajolet-Laudinat O., Dupuit F., Pierrot D., Fuchey C., Plotkowski M. C., Puchelle E. Protection of human respiratory epithelium from Pseudomonas aeruginosa adherence by phosphatidylglycerol liposomes. Infect Immun. 1994 Feb;62(2):704–708. doi: 10.1128/iai.62.2.704-708.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hopkins C. R., Gibson A., Shipman M., Strickland D. K., Trowbridge I. S. In migrating fibroblasts, recycling receptors are concentrated in narrow tubules in the pericentriolar area, and then routed to the plasma membrane of the leading lamella. J Cell Biol. 1994 Jun;125(6):1265–1274. doi: 10.1083/jcb.125.6.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Imundo L., Barasch J., Prince A., Al-Awqati Q. Cystic fibrosis epithelial cells have a receptor for pathogenic bacteria on their apical surface. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):3019–3023. doi: 10.1073/pnas.92.7.3019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Krivan H. C., Ginsburg V., Roberts D. D. Pseudomonas aeruginosa and Pseudomonas cepacia isolated from cystic fibrosis patients bind specifically to gangliotetraosylceramide (asialo GM1) and gangliotriaosylceramide (asialo GM2). Arch Biochem Biophys. 1988 Jan;260(1):493–496. doi: 10.1016/0003-9861(88)90473-0. [DOI] [PubMed] [Google Scholar]
  12. Lamblin G., Lhermitte M., Klein A., Houdret N., Scharfman A., Ramphal R., Roussel P. The carbohydrate diversity of human respiratory mucins: a protection of the underlying mucosa? Am Rev Respir Dis. 1991 Sep;144(3 Pt 2):S19–S24. doi: 10.1164/ajrccm/144.3_pt_2.S19. [DOI] [PubMed] [Google Scholar]
  13. Lee K. K., Sheth H. B., Wong W. Y., Sherburne R., Paranchych W., Hodges R. S., Lingwood C. A., Krivan H., Irvin R. T. The binding of Pseudomonas aeruginosa pili to glycosphingolipids is a tip-associated event involving the C-terminal region of the structural pilin subunit. Mol Microbiol. 1994 Feb;11(4):705–713. doi: 10.1111/j.1365-2958.1994.tb00348.x. [DOI] [PubMed] [Google Scholar]
  14. Philippon S., Streckert H. J., Morgenroth K. In vitro study of the bronchial mucosa during Pseudomonas aeruginosa infection. Virchows Arch A Pathol Anat Histopathol. 1993;423(1):39–43. doi: 10.1007/BF01606430. [DOI] [PubMed] [Google Scholar]
  15. Plotkowski M. C., Beck G., Tournier J. M., Bernardo-Filho M., Marques E. A., Puchelle E. Adherence of Pseudomonas aeruginosa to respiratory epithelium and the effect of leucocyte elastase. J Med Microbiol. 1989 Dec;30(4):285–293. doi: 10.1099/00222615-30-4-285. [DOI] [PubMed] [Google Scholar]
  16. Plotkowski M. C., Chevillard M., Pierrot D., Altemayer D., Zahm J. M., Colliot G., Puchelle E. Differential adhesion of Pseudomonas aeruginosa to human respiratory epithelial cells in primary culture. J Clin Invest. 1991 Jun;87(6):2018–2028. doi: 10.1172/JCI115231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Plotkowski M. C., Zahm J. M., Tournier J. M., Puchelle E. Pseudomonas aeruginosa adhesion to normal and injured respiratory mucosa. Mem Inst Oswaldo Cruz. 1992;87 (Suppl 5):61–68. doi: 10.1590/s0074-02761992000900008. [DOI] [PubMed] [Google Scholar]
  18. Ramphal R., Carnoy C., Fievre S., Michalski J. C., Houdret N., Lamblin G., Strecker G., Roussel P. Pseudomonas aeruginosa recognizes carbohydrate chains containing type 1 (Gal beta 1-3GlcNAc) or type 2 (Gal beta 1-4GlcNAc) disaccharide units. Infect Immun. 1991 Feb;59(2):700–704. doi: 10.1128/iai.59.2.700-704.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ramphal R., Pyle M. Adherence of mucoid and nonmucoid Pseudomonas aeruginosa to acid-injured tracheal epithelium. Infect Immun. 1983 Jul;41(1):345–351. doi: 10.1128/iai.41.1.345-351.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Saiman L., Cacalano G., Gruenert D., Prince A. Comparison of adherence of Pseudomonas aeruginosa to respiratory epithelial cells from cystic fibrosis patients and healthy subjects. Infect Immun. 1992 Jul;60(7):2808–2814. doi: 10.1128/iai.60.7.2808-2814.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Saiman L., Prince A. Pseudomonas aeruginosa pili bind to asialoGM1 which is increased on the surface of cystic fibrosis epithelial cells. J Clin Invest. 1993 Oct;92(4):1875–1880. doi: 10.1172/JCI116779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sheth H. B., Lee K. K., Wong W. Y., Srivastava G., Hindsgaul O., Hodges R. S., Paranchych W., Irvin R. T. The pili of Pseudomonas aeruginosa strains PAK and PAO bind specifically to the carbohydrate sequence beta GalNAc(1-4)beta Gal found in glycosphingolipids asialo-GM1 and asialo-GM2. Mol Microbiol. 1994 Feb;11(4):715–723. doi: 10.1111/j.1365-2958.1994.tb00349.x. [DOI] [PubMed] [Google Scholar]
  23. Tsang K. W., Rutman A., Tanaka E., Lund V., Dewar A., Cole P. J., Wilson R. Interaction of Pseudomonas aeruginosa with human respiratory mucosa in vitro. Eur Respir J. 1994 Oct;7(10):1746–1753. doi: 10.1183/09031936.94.07101746. [DOI] [PubMed] [Google Scholar]
  24. Yamaguchi T., Yamada H. Role of mechanical injury on airway surface in the pathogenesis of Pseudomonas aeruginosa. Am Rev Respir Dis. 1991 Nov;144(5):1147–1152. doi: 10.1164/ajrccm/144.5.1147. [DOI] [PubMed] [Google Scholar]
  25. Zahm J. M., Chevillard M., Puchelle E. Wound repair of human surface respiratory epithelium. Am J Respir Cell Mol Biol. 1991 Sep;5(3):242–248. doi: 10.1165/ajrcmb/5.3.242. [DOI] [PubMed] [Google Scholar]
  26. Zar H., Saiman L., Quittell L., Prince A. Binding of Pseudomonas aeruginosa to respiratory epithelial cells from patients with various mutations in the cystic fibrosis transmembrane regulator. J Pediatr. 1995 Feb;126(2):230–233. doi: 10.1016/s0022-3476(95)70549-x. [DOI] [PubMed] [Google Scholar]
  27. Zoutman D. E., Hulbert W. C., Pasloske B. L., Joffe A. M., Volpel K., Trebilcock M. K., Paranchych W. The role of polar pili in the adherence of Pseudomonas aeruginosa to injured canine tracheal cells: a semiquantitative morphologic study. Scanning Microsc. 1991 Mar;5(1):109–126. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES