Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2005 Aug;76(8):1135–1139. doi: 10.1136/jnnp.2004.041269

Impact of pyrexia on neurochemistry and cerebral oxygenation after acute brain injury

N Stocchetti 1, A Protti 1, M Lattuada 1, S Magnoni 1, L Longhi 1, L Ghisoni 1, M Egidi 1, E Zanier 1
PMCID: PMC1739755  PMID: 16024893

Abstract

Background: Postischaemic pyrexia exacerbates neuronal damage. Hyperthermia related cerebral changes have still not been well investigated in humans.

Objective: To study how pyrexia affects neurochemistry and cerebral oxygenation after acute brain injury.

Methods: 18 acutely brain injured patients were studied at the onset and resolution of febrile episodes (brain temperature ⩾38.7°C). Intracranial pressure (ICP), brain tissue oxygen tension (PbrO2), and brain tissue temperature (Tbr) were recorded continuously; jugular venous blood was sampled intermittently. Microdialysis probes were inserted in the cerebral cortex and in subcutaneous tissue. Glucose, lactate, pyruvate, and glutamate were measured hourly. The lactate to pyruvate ratio was calculated.

Results: Mean (SD) Tbr rose from 38 (0.5) to 39.3 (0.3)°C. Arteriojugular oxygen content difference (AJDO2) fell from 4.2 (0.7) to 3.8 (0.5) vol% (p<0.05) and PbrO2 rose from 32 (21) to 37 (22) mm Hg (p<0.05). ICP increased slightly and no significant neurochemical alterations occurred. Opposite changes were recorded when brain temperature returned towards baseline.

Conclusions: As long as substrate and oxygen delivery remain adequate, hyperthermia on its own does not seem to induce any further significant neurochemical alterations. Changes in cerebral blood volume may, however, affect intracranial pressure.

Full Text

The Full Text of this article is available as a PDF (72.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bacher A., Kwon J. Y., Zornow M. H. Effects of temperature on cerebral tissue oxygen tension, carbon dioxide tension, and pH during transient global ischemia in rabbits. Anesthesiology. 1998 Feb;88(2):403–409. doi: 10.1097/00000542-199802000-00019. [DOI] [PubMed] [Google Scholar]
  2. Benveniste H., Hüttemeier P. C. Microdialysis--theory and application. Prog Neurobiol. 1990;35(3):195–215. doi: 10.1016/0301-0082(90)90027-e. [DOI] [PubMed] [Google Scholar]
  3. Bullock R., Zauner A., Woodward J. J., Myseros J., Choi S. C., Ward J. D., Marmarou A., Young H. F. Factors affecting excitatory amino acid release following severe human head injury. J Neurosurg. 1998 Oct;89(4):507–518. doi: 10.3171/jns.1998.89.4.0507. [DOI] [PubMed] [Google Scholar]
  4. Busija D. W., Leffler C. W., Pourcyrous M. Hyperthermia increases cerebral metabolic rate and blood flow in neonatal pigs. Am J Physiol. 1988 Aug;255(2 Pt 2):H343–H346. doi: 10.1152/ajpheart.1988.255.2.H343. [DOI] [PubMed] [Google Scholar]
  5. Busto R., Dietrich W. D., Globus M. Y., Valdés I., Scheinberg P., Ginsberg M. D. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab. 1987 Dec;7(6):729–738. doi: 10.1038/jcbfm.1987.127. [DOI] [PubMed] [Google Scholar]
  6. Busto R., Globus M. Y., Dietrich W. D., Martinez E., Valdés I., Ginsberg M. D. Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain. Stroke. 1989 Jul;20(7):904–910. doi: 10.1161/01.str.20.7.904. [DOI] [PubMed] [Google Scholar]
  7. Clasen R. A., Pandolfi S., Laing I., Casey D., Jr Experimental study of relation of fever to cerebral edema. J Neurosurg. 1974 Nov;41(5):576–581. doi: 10.3171/jns.1974.41.5.0576. [DOI] [PubMed] [Google Scholar]
  8. Dietrich W. D., Alonso O., Halley M., Busto R. Delayed posttraumatic brain hyperthermia worsens outcome after fluid percussion brain injury: a light and electron microscopic study in rats. Neurosurgery. 1996 Mar;38(3):533–541. doi: 10.1097/00006123-199603000-00023. [DOI] [PubMed] [Google Scholar]
  9. Dings J., Meixensberger J., Jäger A., Roosen K. Clinical experience with 118 brain tissue oxygen partial pressure catheter probes. Neurosurgery. 1998 Nov;43(5):1082–1095. doi: 10.1097/00006123-199811000-00045. [DOI] [PubMed] [Google Scholar]
  10. Doppenberg E. M., Zauner A., Bullock R., Ward J. D., Fatouros P. P., Young H. F. Correlations between brain tissue oxygen tension, carbon dioxide tension, pH, and cerebral blood flow--a better way of monitoring the severely injured brain? Surg Neurol. 1998 Jun;49(6):650–654. doi: 10.1016/s0090-3019(97)00355-8. [DOI] [PubMed] [Google Scholar]
  11. Doppenberg E. M., Zauner A., Watson J. C., Bullock R. Determination of the ischemic threshold for brain oxygen tension. Acta Neurochir Suppl. 1998;71:166–169. doi: 10.1007/978-3-7091-6475-4_48. [DOI] [PubMed] [Google Scholar]
  12. Enblad P., Valtysson J., Andersson J., Lilja A., Valind S., Antoni G., Långström B., Hillered L., Persson L. Simultaneous intracerebral microdialysis and positron emission tomography in the detection of ischemia in patients with subarachnoid hemorrhage. J Cereb Blood Flow Metab. 1996 Jul;16(4):637–644. doi: 10.1097/00004647-199607000-00014. [DOI] [PubMed] [Google Scholar]
  13. Ginsberg M. D., Busto R. Combating hyperthermia in acute stroke: a significant clinical concern. Stroke. 1998 Feb;29(2):529–534. doi: 10.1161/01.str.29.2.529. [DOI] [PubMed] [Google Scholar]
  14. Goodman J. C., Valadka A. B., Gopinath S. P., Uzura M., Robertson C. S. Extracellular lactate and glucose alterations in the brain after head injury measured by microdialysis. Crit Care Med. 1999 Sep;27(9):1965–1973. doi: 10.1097/00003246-199909000-00041. [DOI] [PubMed] [Google Scholar]
  15. Hoffman W. E., Charbel F. T., Portillo G. G., Edelman G., Ausman J. I. Regional tissue pO2, pCO2, pH and temperature measurement. Neurol Res. 1998;20 (Suppl 1):S81–S84. [PubMed] [Google Scholar]
  16. Hutchinson P. J., O'Connell M. T., Maskell L. B., Pickard J. D. Monitoring by subcutaneous microdialysis in neurosurgical intensive care. Acta Neurochir Suppl. 1999;75:57–59. doi: 10.1007/978-3-7091-6415-0_12. [DOI] [PubMed] [Google Scholar]
  17. Jones P. A., Andrews P. J., Midgley S., Anderson S. I., Piper I. R., Tocher J. L., Housley A. M., Corrie J. A., Slattery J., Dearden N. M. Measuring the burden of secondary insults in head-injured patients during intensive care. J Neurosurg Anesthesiol. 1994 Jan;6(1):4–14. [PubMed] [Google Scholar]
  18. Kilpatrick M. M., Lowry D. W., Firlik A. D., Yonas H., Marion D. W. Hyperthermia in the neurosurgical intensive care unit. Neurosurgery. 2000 Oct;47(4):850–856. doi: 10.1097/00006123-200010000-00011. [DOI] [PubMed] [Google Scholar]
  19. Mickley G. A., Cobb B. L., Farrell S. T. Brain hyperthermia alters local cerebral glucose utilization: a comparison of hyperthermic agents. Int J Hyperthermia. 1997 Jan-Feb;13(1):99–114. doi: 10.3109/02656739709056434. [DOI] [PubMed] [Google Scholar]
  20. O'Grady N. P., Barie P. S., Bartlett J., Bleck T., Garvey G., Jacobi J., Linden P., Maki D. G., Nam M., Pasculle W. Practice parameters for evaluating new fever in critically ill adult patients. Task Force of the American College of Critical Care Medicine of the Society of Critical Care Medicine in collaboration with the Infectious Disease Society of America. Crit Care Med. 1998 Feb;26(2):392–408. doi: 10.1097/00003246-199802000-00046. [DOI] [PubMed] [Google Scholar]
  21. Reglodi D., Somogyvari-Vigh A., Maderdrut J. L., Vigh S., Arimura A. Postischemic spontaneous hyperthermia and its effects in middle cerebral artery occlusion in the rat. Exp Neurol. 2000 Jun;163(2):399–407. doi: 10.1006/exnr.2000.7367. [DOI] [PubMed] [Google Scholar]
  22. Reinstrup P., Ståhl N., Mellergård P., Uski T., Ungerstedt U., Nordström C. H. Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery. 2000 Sep;47(3):701–710. doi: 10.1097/00006123-200009000-00035. [DOI] [PubMed] [Google Scholar]
  23. Reith J., Jørgensen H. S., Pedersen P. M., Nakayama H., Raaschou H. O., Jeppesen L. L., Olsen T. S. Body temperature in acute stroke: relation to stroke severity, infarct size, mortality, and outcome. Lancet. 1996 Feb 17;347(8999):422–425. doi: 10.1016/s0140-6736(96)90008-2. [DOI] [PubMed] [Google Scholar]
  24. Rossi S., Zanier E. R., Mauri I., Columbo A., Stocchetti N. Brain temperature, body core temperature, and intracranial pressure in acute cerebral damage. J Neurol Neurosurg Psychiatry. 2001 Oct;71(4):448–454. doi: 10.1136/jnnp.71.4.448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Soukup Jens, Zauner Alois, Doppenberg Egon M. R., Menzel Matthias, Gilman Charlotte, Bullock Ross, Young Harold F. Relationship between brain temperature, brain chemistry and oxygen delivery after severe human head injury: the effect of mild hypothermia. Neurol Res. 2002 Mar;24(2):161–168. doi: 10.1179/016164102101199710. [DOI] [PubMed] [Google Scholar]
  26. Stocchetti Nino, Rossi Sandra, Zanier Elisa Roncati, Colombo Angelo, Beretta Luigi, Citerio Giuseppe. Pyrexia in head-injured patients admitted to intensive care. Intensive Care Med. 2002 Oct 4;28(11):1555–1562. doi: 10.1007/s00134-002-1513-1. [DOI] [PubMed] [Google Scholar]
  27. Valadka A. B., Gopinath S. P., Contant C. F., Uzura M., Robertson C. S. Relationship of brain tissue PO2 to outcome after severe head injury. Crit Care Med. 1998 Sep;26(9):1576–1581. doi: 10.1097/00003246-199809000-00029. [DOI] [PubMed] [Google Scholar]
  28. Wass C. T., Lanier W. L., Hofer R. E., Scheithauer B. W., Andrews A. G. Temperature changes of > or = 1 degree C alter functional neurologic outcome and histopathology in a canine model of complete cerebral ischemia. Anesthesiology. 1995 Aug;83(2):325–335. doi: 10.1097/00000542-199508000-00013. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES