Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2005 Aug;76(8):1064–1069. doi: 10.1136/jnnp.2004.051334

Neurophysiological predictors of long term response to AChE inhibitors in AD patients

L Di 1, A Oliviero 1, F Pilato 1, E Saturno 1, M Dileone 1, C Marra 1, S Ghirlanda 1, F Ranieri 1, G Gainotti 1, P Tonali 1
PMCID: PMC1739760  PMID: 16024879

Abstract

Background: In vivo evaluation of cholinergic circuits of the human brain has recently been introduced using a transcranial magnetic stimulation (TMS) protocol based on coupling peripheral nerve stimulation with motor cortex TMS (short latency afferent inhibition, SAI). SAI is reduced in Alzheimer's disease (AD) and drugs enhancing cholinergic transmission increase SAI.

Methods: We evaluated whether SAI testing, together with SAI test-retest, after a single dose of the acetylcholinesterase (AChE) inhibitor rivastigmine, might be useful in predicting the response after 1 year treatment with rivastigmine in 16 AD patients.

Results: Fourteen AD patients had pathologically reduced SAI. SAI was increased after administration of a single oral dose of rivastigmine in AD patients with abnormal baseline SAI, but individual responses to rivastigmine varied widely, with SAI change ranging from an increase in inhibition of ∼50% of test size to no change. Baseline SAI and the increase in SAI after a single dose of rivastigmine were correlated with response to long term treatment. A normal SAI in baseline conditions, or an abnormal SAI in baseline conditions that was not greatly increased by a single oral dose of rivastigmine, were invariably associated with poor response to long term treatment, while an abnormal SAI in baseline conditions in conjunction with a large increase in SAI after a single dose of rivastigmine was associated with good response to long term treatment in most of the patients.

Conclusions: Evaluation of SAI may be useful for identifying AD patients likely to respond to treatment with AChE inhibitors.

Full Text

The Full Text of this article is available as a PDF (109.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aarsland D., Larsen J. P., Reinvang I., Aasland A. M. Effects of cholinergic blockade on language in healthy young women. Implications for the cholinergic hypothesis in dementia of the Alzheimer type. Brain. 1994 Dec;117(Pt 6):1377–1384. doi: 10.1093/brain/117.6.1377. [DOI] [PubMed] [Google Scholar]
  2. Adler G., Brassen S., Chwalek K., Dieter B., Teufel M. Prediction of treatment response to rivastigmine in Alzheimer's dementia. J Neurol Neurosurg Psychiatry. 2004 Feb;75(2):292–294. [PMC free article] [PubMed] [Google Scholar]
  3. Alhainen K., Riekkinen P. J., Sr Discrimination of Alzheimer patients responding to cholinesterase inhibitor therapy. Acta Neurol Scand Suppl. 1993;149:16–21. doi: 10.1111/j.1600-0404.1993.tb04248.x. [DOI] [PubMed] [Google Scholar]
  4. Bartus R. T. Evidence for a direct cholinergic involvement in the scopolamine-induced amnesia in monkeys: effects of concurrent administration of physostigmine and methylphenidate with scopolamine. Pharmacol Biochem Behav. 1978 Dec;9(6):833–836. doi: 10.1016/0091-3057(78)90364-7. [DOI] [PubMed] [Google Scholar]
  5. Di Lazzaro V., Oliviero A., Meglio M., Cioni B., Tamburrini G., Tonali P., Rothwell J. C. Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clin Neurophysiol. 2000 May;111(5):794–799. doi: 10.1016/s1388-2457(99)00314-4. [DOI] [PubMed] [Google Scholar]
  6. Di Lazzaro V., Oliviero A., Pilato F., Saturno E., Dileone M., Marra C., Daniele A., Ghirlanda S., Gainotti G., Tonali P. A. Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2004 Apr;75(4):555–559. doi: 10.1136/jnnp.2003.018127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Di Lazzaro V., Oliviero A., Profice P., Pennisi M. A., Di Giovanni S., Zito G., Tonali P., Rothwell J. C. Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex. Exp Brain Res. 2000 Dec;135(4):455–461. doi: 10.1007/s002210000543. [DOI] [PubMed] [Google Scholar]
  8. Di Lazzaro Vincenzo, Oliviero A., Tonali P. A., Marra C., Daniele A., Profice P., Saturno E., Pilato F., Masullo C., Rothwell J. C. Noninvasive in vivo assessment of cholinergic cortical circuits in AD using transcranial magnetic stimulation. Neurology. 2002 Aug 13;59(3):392–397. doi: 10.1212/wnl.59.3.392. [DOI] [PubMed] [Google Scholar]
  9. Doody R. S., Stevens J. C., Beck C., Dubinsky R. M., Kaye J. A., Gwyther L., Mohs R. C., Thal L. J., Whitehouse P. J., DeKosky S. T. Practice parameter: management of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2001 May 8;56(9):1154–1166. doi: 10.1212/wnl.56.9.1154. [DOI] [PubMed] [Google Scholar]
  10. Everitt B. J., Robbins T. W. Central cholinergic systems and cognition. Annu Rev Psychol. 1997;48:649–684. doi: 10.1146/annurev.psych.48.1.649. [DOI] [PubMed] [Google Scholar]
  11. Francis P. T., Palmer A. M., Snape M., Wilcock G. K. The cholinergic hypothesis of Alzheimer's disease: a review of progress. J Neurol Neurosurg Psychiatry. 1999 Feb;66(2):137–147. doi: 10.1136/jnnp.66.2.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kennedy J. S., Polinsky R. J., Johnson B., Loosen P., Enz A., Laplanche R., Schmidt D., Mancione L. C., Parris W. C., Ebert M. H. Preferential cerebrospinal fluid acetylcholinesterase inhibition by rivastigmine in humans. J Clin Psychopharmacol. 1999 Dec;19(6):513–521. doi: 10.1097/00004714-199912000-00005. [DOI] [PubMed] [Google Scholar]
  13. Krall W. J., Sramek J. J., Cutler N. R. Cholinesterase inhibitors: a therapeutic strategy for Alzheimer disease. Ann Pharmacother. 1999 Apr;33(4):441–450. doi: 10.1345/aph.18211. [DOI] [PubMed] [Google Scholar]
  14. McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E. M. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984 Jul;34(7):939–944. doi: 10.1212/wnl.34.7.939. [DOI] [PubMed] [Google Scholar]
  15. Oldfield R. C. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971 Mar;9(1):97–113. doi: 10.1016/0028-3932(71)90067-4. [DOI] [PubMed] [Google Scholar]
  16. Reisberg B., Ferris S. H., de Leon M. J., Crook T. Global Deterioration Scale (GDS). Psychopharmacol Bull. 1988;24(4):661–663. [PubMed] [Google Scholar]
  17. Sailer Alexandra, Molnar Gregory F., Paradiso Guillermo, Gunraj Carolyn A., Lang Anthony E., Chen Robert. Short and long latency afferent inhibition in Parkinson's disease. Brain. 2003 Jun 4;126(Pt 8):1883–1894. doi: 10.1093/brain/awg183. [DOI] [PubMed] [Google Scholar]
  18. Tokimura H., Di Lazzaro V., Tokimura Y., Oliviero A., Profice P., Insola A., Mazzone P., Tonali P., Rothwell J. C. Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J Physiol. 2000 Mar 1;523(Pt 2):503–513. doi: 10.1111/j.1469-7793.2000.t01-1-00503.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Villa G., Gainotti G., De Bonis C., Marra C. Double dissociation between temporal and spatial pattern processing in patients with frontal and parietal damage. Cortex. 1990 Sep;26(3):399–407. doi: 10.1016/s0010-9452(13)80089-5. [DOI] [PubMed] [Google Scholar]
  20. Ziemann U., Lönnecker S., Steinhoff B. J., Paulus W. Effects of antiepileptic drugs on motor cortex excitability in humans: a transcranial magnetic stimulation study. Ann Neurol. 1996 Sep;40(3):367–378. doi: 10.1002/ana.410400306. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES