Skip to main content
Occupational and Environmental Medicine logoLink to Occupational and Environmental Medicine
. 2000 Jan;57(1):19–27. doi: 10.1136/oem.57.1.19

Neurobehavioural effects of occupational exposure to cadmium: a cross sectional epidemiological study

M Viaene 1, R Masschelein 1, J Leenders 1, M De Groof 1, L Swerts 1, H Roels 1
PMCID: PMC1739855  PMID: 10711265

Abstract

BACKGROUND—A patient with unexplained minor behavioural changes associated with an axonal sensorimotor polyneuropathy had a history of chronic occupational exposure to cadmium (Cd). Although animal studies have shown that Cd is a potent neurotoxicant, little is known about its toxicity for the human central nervous system. The aim of this study was to investigate the toxic potential of chronic occupational exposure to Cd on neurobehavioural functions.
METHODS—A cross sectional epidemiological study was conducted in a group of Cd workers and an age matched control group. Eighty nine adult men (42 exposed to Cd and 47 control workers) were given a blinded standardised examination that consisted of computer assisted neurobehavioural tests (neurobehavioural examination system), a validated questionnaire to assess neurotoxic complaints (neurotoxicity symptom checklist-60, NSC-60), and a standardised self administered questionnaire to detect complaints consistent with peripheral neuropathy and dysfunction of the autonomic nervous system. Historical and current data on biomonitoring of exposure to Cd, either the highest value of Cd in urine (CdU in µg Cd/g creatinine) of each Cd worker during work (CdUmax) or the current value (CdUcurrent) of each control, were available as well as data on microproteinuria.
RESULTS—Cd workers (CdUmax: mean (range), 12.6 (0.4-38.4)) performed worse than the controls (CdUcurrent: mean (range), 0.7 (0.1-2.0)) on visuomotor tasks, symbol digit substitution (p=0.008), and simple reaction time to direction (p=0.058) or location (p=0.042) of a stimulus. In multiple linear regression analysis, symbol digit substitution, simple direction reaction time test, and simple location reaction time test were significantly related to CdUmax, (β=0.35 ( p<0.001), β= 0.25 (p=0.012), and β=0.23 (p=0.021) respectively). More complaints consistent with peripheral neuropathy (p=0.004), complaints about equilibrium (p=0.015), and complaints about concentration ability (p=0.053) were found in the group exposed to Cd than in the control group, and these variables correlated positively with CdUmax (peripheral neuropathy: β=0.38, p<0.001; equilibrium: β=0.22, p=0.057; concentration ability: β=0.27, p=0.020).
CONCLUSION—Slowing of visuomotor functioning on neurobehavioural testing and increase in complaints consistent with peripheral neuropathy, complaints about equilibrium, and complaints about concentration ability were dose dependently associated with CdU. Age, exposure to other neurotoxicants, or status of renal function could not explain these findings. The present study also indicates that an excess of complaints may be detected in Cd workers before signs of microproteinuria induced by Cd occur.


Keywords: cadmium; neurotoxicity; occupational exposure

Full Text

The Full Text of this article is available as a PDF (139.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADAMS R. G., CRABTREE N. Anosmia in alkaline battery workers. Br J Ind Med. 1961 Jul;18:216–221. doi: 10.1136/oem.18.3.216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ali M. M., Mathur N., Chandra S. V. Effect of chronic cadmium exposure on locomotor behaviour of rats. Indian J Exp Biol. 1990 Jul;28(7):653–656. [PubMed] [Google Scholar]
  3. Arito H., Sudo A., Suzuki Y. Aggressive behavior of the rat induced by repeated administration of cadmium. Toxicol Lett. 1981 Mar;7(6):457–461. doi: 10.1016/0378-4274(81)90093-x. [DOI] [PubMed] [Google Scholar]
  4. Arvidson B. Retrograde axonal transport of cadmium in the rat hypoglossal nerve. Neurosci Lett. 1985 Nov 20;62(1):45–49. doi: 10.1016/0304-3940(85)90282-4. [DOI] [PubMed] [Google Scholar]
  5. Arvidson B., Tjälve H. Distribution of 109Cd in the nervous system of rats after intravenous injection. Acta Neuropathol. 1986;69(1-2):111–116. doi: 10.1007/BF00687046. [DOI] [PubMed] [Google Scholar]
  6. BAADER E. W. Chronic cadmium poisoning. Ind Med Surg. 1952 Sep;21(9):427–430. [PubMed] [Google Scholar]
  7. Bar-Sela S., Levy M., Westin J. B., Laster R., Richter E. D. Medical findings in nickel-cadmium battery workers. Isr J Med Sci. 1992 Aug-Sep;28(8-9):578–583. [PubMed] [Google Scholar]
  8. Blum L. W., Mandel S., Duckett S. Peripheral neuropathy and cadmium toxicity. Pa Med. 1989 Apr;92(4):54–56. [PubMed] [Google Scholar]
  9. Bonithon-Kopp C., Huel G., Moreau T., Wendling R. Prenatal exposure to lead and cadmium and psychomotor development of the child at 6 years. Neurobehav Toxicol Teratol. 1986 May-Jun;8(3):307–310. [PubMed] [Google Scholar]
  10. Bremner I. Nutritional and physiologic significance of metallothionein. Methods Enzymol. 1991;205:25–35. doi: 10.1016/0076-6879(91)05080-f. [DOI] [PubMed] [Google Scholar]
  11. Buchet J. P., Roels H., Bernard A., Lauwerys R. Assessment of renal function of workers exposed to inorganic lead, calcium or mercury vapor. J Occup Med. 1980 Nov;22(11):741–750. [PubMed] [Google Scholar]
  12. COTTER L. H. Treatment of cadmium poisoning with edathamil calcium disodium. J Am Med Assoc. 1958 Feb 15;166(7):735–736. doi: 10.1001/jama.1958.02990070021005. [DOI] [PubMed] [Google Scholar]
  13. Calne D. B. Is idiopathic parkinsonism the consequence of an event or a process? Neurology. 1994 Jan;44(1):5–10. doi: 10.1212/wnl.44.1.5. [DOI] [PubMed] [Google Scholar]
  14. Chandra S. V., Murthy R. C., Ali M. M. Cadmium-induced behavioral changes in growing rats. Ind Health. 1985;23(2):159–162. doi: 10.2486/indhealth.23.159. [DOI] [PubMed] [Google Scholar]
  15. Clark D. E., Nation J. R., Bourgeois A. J., Hare M. F., Baker D. M., Hinderberger E. J. The regional distribution of cadmium in the brains of orally exposed adult rats. Neurotoxicology. 1985 Fall;6(3):109–114. [PubMed] [Google Scholar]
  16. Dunphy B. Acute occupational cadmium poisoning. A critical review of the literature. J Occup Med. 1967 Jan;9(1):22–26. [PubMed] [Google Scholar]
  17. Evans J., Hastings L. Accumulation of Cd(II) in the CNS depending on the route of administration: intraperitoneal, intratracheal, or intranasal. Fundam Appl Toxicol. 1992 Aug;19(2):275–278. doi: 10.1016/0272-0590(92)90161-a. [DOI] [PubMed] [Google Scholar]
  18. Frederickson C. J., Moncrieff D. W. Zinc-containing neurons. Biol Signals. 1994 May-Jun;3(3):127–139. doi: 10.1159/000109536. [DOI] [PubMed] [Google Scholar]
  19. Gabbiani G., Gregory A., Baic D. Cadmium-induced selective lesions of sensory ganglia. J Neuropathol Exp Neurol. 1967 Jul;26(3):498–506. doi: 10.1097/00005072-196707000-00010. [DOI] [PubMed] [Google Scholar]
  20. Gilioli R. EURONEST: a concerted action of the European community for the study of organic solvents neurotoxicity. Environ Res. 1993 Jul;62(1):89–98. doi: 10.1006/enrs.1993.1093. [DOI] [PubMed] [Google Scholar]
  21. Gotti C., Cabrini D., Sher E., Clementi F. Effects of long-term in vitro exposure to aluminum, cadmium or lead on differentiation and cholinergic receptor expression in a human neuroblastoma cell line. Cell Biol Toxicol. 1987 Dec;3(4):431–440. doi: 10.1007/BF00119915. [DOI] [PubMed] [Google Scholar]
  22. Hart R. P., Rose C. S., Hamer R. M. Neuropsychological effects of occupational exposure to cadmium. J Clin Exp Neuropsychol. 1989 Dec;11(6):933–943. doi: 10.1080/01688638908400946. [DOI] [PubMed] [Google Scholar]
  23. Hidalgo J., García A., Oliva A. M., Giralt M., Gasull T., González B., Milnerowicz H., Wood A., Bremner I. Effect of zinc, copper and glucocorticoids on metallothionein levels of cultured neurons and astrocytes from rat brain. Chem Biol Interact. 1994 Dec;93(3):197–219. doi: 10.1016/0009-2797(94)90020-5. [DOI] [PubMed] [Google Scholar]
  24. Hänninen H., Aitio A., Kovala T., Luukkonen R., Matikainen E., Mannelin T., Erkkilä J., Riihimäki V. Occupational exposure to lead and neuropsychological dysfunction. Occup Environ Med. 1998 Mar;55(3):202–209. doi: 10.1136/oem.55.3.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Järup L., Berglund M., Elinder C. G., Nordberg G., Vahter M. Health effects of cadmium exposure--a review of the literature and a risk estimate. Scand J Work Environ Health. 1998;24 (Suppl 1):1–51. [PubMed] [Google Scholar]
  26. Kazantzis G., Lam T. H., Sullivan K. R. Mortality of cadmium-exposed workers. A five-year update. Scand J Work Environ Health. 1988 Aug;14(4):220–223. doi: 10.5271/sjweh.1929. [DOI] [PubMed] [Google Scholar]
  27. Kilburn K. H., McKinley K. L. Persistent neurotoxicity from a battery fire: is cadmium the culprit? South Med J. 1996 Jul;89(7):693–698. doi: 10.1097/00007611-199607000-00009. [DOI] [PubMed] [Google Scholar]
  28. Kutzman R. S., Drew R. T., Shiotsuka R. N., Cockrell B. Y. Pulmonary changes resulting from subchronic exposure to cadmium chloride aerosol. J Toxicol Environ Health. 1986;17(2-3):175–189. doi: 10.1080/15287398609530814. [DOI] [PubMed] [Google Scholar]
  29. Lauwerys R. R., Buchet J. P., Roels H. A., Brouwers J., Stanescu D. Epidemiological survey of workers exposed to cadmium. Arch Environ Health. 1974 Mar;28(3):145–148. doi: 10.1080/00039896.1974.10666455. [DOI] [PubMed] [Google Scholar]
  30. Letz R. Use of computerized test batteries for quantifying neurobehavioral outcomes. Environ Health Perspect. 1991 Jan;90:195–198. doi: 10.1289/ehp.90-1519520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lewis M., Worobey J., Ramsay D. S., McCormack M. K. Prenatal exposure to heavy metals: effect on childhood cognitive skills and health status. Pediatrics. 1992 Jun;89(6 Pt 1):1010–1015. [PubMed] [Google Scholar]
  32. MNusioł A., Szyrocka-Szwed K., Wojczuk J., Kudybka E. Ocena stanu neurologicznego i badań EEG u pracowników narazonych zawodowo na przewlekłe działanie kadmu. Wiad Lek. 1981 Oct 1;34(19):1615–1620. [PubMed] [Google Scholar]
  33. Marlowe M., Errera J., Jacobs J. Increased lead and cadmium burdens among mentally retarded children and children with borderline intelligence. Am J Ment Defic. 1983 Mar;87(5):477–483. [PubMed] [Google Scholar]
  34. Masters B. A., Quaife C. J., Erickson J. C., Kelly E. J., Froelick G. J., Zambrowicz B. P., Brinster R. L., Palmiter R. D. Metallothionein III is expressed in neurons that sequester zinc in synaptic vesicles. J Neurosci. 1994 Oct;14(10):5844–5857. doi: 10.1523/JNEUROSCI.14-10-05844.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Nath R., Prasad R., Palinal V. K., Chopra R. K. Molecular basis of cadmium toxicity. Prog Food Nutr Sci. 1984;8(1-2):109–163. [PubMed] [Google Scholar]
  36. Pal R., Nath R., Gill K. D. Lipid peroxidation and antioxidant defense enzymes in various regions of adult rat brain after co-exposure to cadmium and ethanol. Pharmacol Toxicol. 1993 Oct;73(4):209–214. doi: 10.1111/j.1600-0773.1993.tb01565.x. [DOI] [PubMed] [Google Scholar]
  37. Palmiter R. D. Constitutive expression of metallothionein-III (MT-III), but not MT-I, inhibits growth when cells become zinc deficient. Toxicol Appl Pharmacol. 1995 Nov;135(1):139–146. doi: 10.1006/taap.1995.1216. [DOI] [PubMed] [Google Scholar]
  38. Palmiter R. D., Findley S. D., Whitmore T. E., Durnam D. M. MT-III, a brain-specific member of the metallothionein gene family. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6333–6337. doi: 10.1073/pnas.89.14.6333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rastogi R. B., Merali Z., Singhal R. L. Cadmium alters behaviour and the biosynthetic capacity for catecholamines and serotonin in neonatal rat brain. J Neurochem. 1977 Apr;28(4):789–794. doi: 10.1111/j.1471-4159.1977.tb10629.x. [DOI] [PubMed] [Google Scholar]
  40. Roels H. A., Lauwerys R. R., Buchet J. P., Bernard A. M., Vos A., Oversteyns M. Health significance of cadmium induced renal dysfunction: a five year follow up. Br J Ind Med. 1989 Nov;46(11):755–764. doi: 10.1136/oem.46.11.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Roels H. A., Lauwerys R. R., Buchet J. P., Bernard A., Chettle D. R., Harvey T. C., Al-Haddad I. K. In vivo measurement of liver and kidney cadmium in workers exposed to this metal: its significance with respect to cadmium in blood and urine. Environ Res. 1981 Oct;26(1):217–240. doi: 10.1016/0013-9351(81)90199-7. [DOI] [PubMed] [Google Scholar]
  42. Roels H. A., Van Assche F. J., Oversteyns M., De Groof M., Lauwerys R. R., Lison D. Reversibility of microproteinuria in cadmium workers with incipient tubular dysfunction after reduction of exposure. Am J Ind Med. 1997 May;31(5):645–652. doi: 10.1002/(sici)1097-0274(199705)31:5<645::aid-ajim21>3.0.co;2-y. [DOI] [PubMed] [Google Scholar]
  43. Rose C. S., Heywood P. G., Costanzo R. M. Olfactory impairment after chronic occupational cadmium exposure. J Occup Med. 1992 Jun;34(6):600–605. [PubMed] [Google Scholar]
  44. Sato K., Iwamasa T., Tsuru T., Takeuchi T. An ultrastructural study of chronic cadmium chloride-induced neuropathy. Acta Neuropathol. 1978 Mar 15;41(3):185–190. doi: 10.1007/BF00690433. [DOI] [PubMed] [Google Scholar]
  45. Shukla A., Shukla G. S., Srimal R. C. Cadmium-induced alterations in blood-brain barrier permeability and its possible correlation with decreased microvessel antioxidant potential in rat. Hum Exp Toxicol. 1996 May;15(5):400–405. doi: 10.1177/096032719601500507. [DOI] [PubMed] [Google Scholar]
  46. Stellern J., Marlowe M., Cossairt A., Errera J. Low lead and cadmium levels and childhood visual-perception development. Percept Mot Skills. 1983 Apr;56(2):539–544. doi: 10.2466/pms.1983.56.2.539. [DOI] [PubMed] [Google Scholar]
  47. Struempler R. E., Larson G. E., Rimland B. Hair mineral analysis and disruptive behavior in clinically normal young men. J Learn Disabil. 1985 Dec;18(10):609–612. doi: 10.1177/002221948501801009. [DOI] [PubMed] [Google Scholar]
  48. Thatcher R. W., Lester M. L., McAlaster R., Horst R. Effects of low levels of cadmium and lead on cognitive functioning in children. Arch Environ Health. 1982 May-Jun;37(3):159–166. doi: 10.1080/00039896.1982.10667557. [DOI] [PubMed] [Google Scholar]
  49. Tischner K. H., Schröder J. M. The effects of cadmium chloride on organotypic cultures of rat sensory ganglia. A light and electron microscope study. J Neurol Sci. 1972 Aug;16(4):383–399. doi: 10.1016/0022-510x(72)90046-9. [DOI] [PubMed] [Google Scholar]
  50. Uchida Y., Takio K., Titani K., Ihara Y., Tomonaga M. The growth inhibitory factor that is deficient in the Alzheimer's disease brain is a 68 amino acid metallothionein-like protein. Neuron. 1991 Aug;7(2):337–347. doi: 10.1016/0896-6273(91)90272-2. [DOI] [PubMed] [Google Scholar]
  51. Valois A. A., Webster W. S. The choroid plexus as a target site for cadmium toxicity following chronic exposure in the adult mouse: an ultrastructural study. Toxicology. 1989 Apr;55(1-2):193–205. doi: 10.1016/0300-483x(89)90186-8. [DOI] [PubMed] [Google Scholar]
  52. Viaene M. K., Roels H. A., Leenders J., De Groof M., Swerts L. J., Lison D., Masschelein R. Cadmium: a possible etiological factor in peripheral polyneuropathy. Neurotoxicology. 1999 Feb;20(1):7–16. [PubMed] [Google Scholar]
  53. Winneke G., Lilienthal H., Zimmermann U. Neurobehavioral effects of lead and cadmium. Dev Toxicol Environ Sci. 1983;11:85–96. [PubMed] [Google Scholar]

Articles from Occupational and Environmental Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES