Skip to main content
Occupational and Environmental Medicine logoLink to Occupational and Environmental Medicine
. 2000 Oct;57(10):685–691. doi: 10.1136/oem.57.10.685

Increased inflammation and intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components

D Brown 1, V Stone 1, P Findlay 1, W MacNee 1, K Donaldson 1
PMCID: PMC1739870  PMID: 10984341

Abstract

OBJECTIVES—Particulate air pollution has been shown to cause adverse health effects, and the ultrafine particle component has been implicated. The aim of the present study was to investigate whether an ultrafine particle exerted its effects through transition metals or other soluble factors released from the surface of the particles.
METHODS—Both in vitro and in vivo models were used to test the imflammogenicity of carbon black (CB) and ultrafine carbon black (UfCB) and the role of transition metals was investigated by treating the particles with desferrioxamine mesylate (desferal), a transition metal chelator. Rats were instilled with particles and the cell population assessed by bronchoalveolar lavage (BAL). Calcium homeostasis in macrophages was assessed with a fluorimetric technique.
RESULTS—UfCB was inflammogenic compared with CB when instilled into Wistar rat lungs, an effect which could not be ameliorated by desferal treatment of the particles. Particle leachates produced no significant inflammation in vivo. In vitro experiments showed that the cytosolic calcium ion concentration in Mono Mac 6 cells was increased significantly after UfCB treatment and treatment of particles with desferal did not alter these effects. Particle leachates had no effect on cytosolic calcium ion concentration. Iron was not detected in leachates of the particles with the desferal assay, however, ng/mg of particles were detectable in citrate leachates with inductively coupled plasma-mass spectrometry (ICP-MS).
CONCLUSIONS—The increased inflammogenicity of UfCB compared with CB cannot be explained by soluble transition metals released from or by accumulation of iron at the particle surface. Differences may be accounted for by increased surface area or particle number.


Keywords: ultrafine; calcium; transition metals

Full Text

The Full Text of this article is available as a PDF (146.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Costa D. L., Dreher K. L. Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models. Environ Health Perspect. 1997 Sep;105 (Suppl 5):1053–1060. doi: 10.1289/ehp.97105s51053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dasenbrock C., Peters L., Creutzenberg O., Heinrich U. The carcinogenic potency of carbon particles with and without PAH after repeated intratracheal administration in the rat. Toxicol Lett. 1996 Nov;88(1-3):15–21. doi: 10.1016/0378-4274(96)03712-5. [DOI] [PubMed] [Google Scholar]
  3. Dolmetsch R. E., Xu K., Lewis R. S. Calcium oscillations increase the efficiency and specificity of gene expression. Nature. 1998 Apr 30;392(6679):933–936. doi: 10.1038/31960. [DOI] [PubMed] [Google Scholar]
  4. Dreher K. L., Jaskot R. H., Lehmann J. R., Richards J. H., McGee J. K., Ghio A. J., Costa D. L. Soluble transition metals mediate residual oil fly ash induced acute lung injury. J Toxicol Environ Health. 1997 Feb 21;50(3):285–305. [PubMed] [Google Scholar]
  5. Driscoll K. E., Carter J. M., Howard B. W., Hassenbein D. G., Pepelko W., Baggs R. B., Oberdörster G. Pulmonary inflammatory, chemokine, and mutagenic responses in rats after subchronic inhalation of carbon black. Toxicol Appl Pharmacol. 1996 Feb;136(2):372–380. doi: 10.1006/taap.1996.0045. [DOI] [PubMed] [Google Scholar]
  6. Faux S. P., Michelangeli F., Levy L. S. Calcium chelator Quin-2 prevents crocidolite-induced DNA strand breakage in human white blood cells. Mutat Res. 1994 Dec 1;311(2):209–215. doi: 10.1016/0027-5107(94)90178-3. [DOI] [PubMed] [Google Scholar]
  7. Ferin J., Oberdörster G., Penney D. P. Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol. 1992 May;6(5):535–542. doi: 10.1165/ajrcmb/6.5.535. [DOI] [PubMed] [Google Scholar]
  8. Gilmour P. S., Brown D. M., Lindsay T. G., Beswick P. H., MacNee W., Donaldson K. Adverse health effects of PM10 particles: involvement of iron in generation of hydroxyl radical. Occup Environ Med. 1996 Dec;53(12):817–822. doi: 10.1136/oem.53.12.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  10. Kennedy T., Ghio A. J., Reed W., Samet J., Zagorski J., Quay J., Carter J., Dailey L., Hoidal J. R., Devlin R. B. Copper-dependent inflammation and nuclear factor-kappaB activation by particulate air pollution. Am J Respir Cell Mol Biol. 1998 Sep;19(3):366–378. doi: 10.1165/ajrcmb.19.3.3042. [DOI] [PubMed] [Google Scholar]
  11. Li X. Y., Brown D., Smith S., MacNee W., Donaldson K. Short-term inflammatory responses following intratracheal instillation of fine and ultrafine carbon black in rats. Inhal Toxicol. 1999 Aug;11(8):709–731. doi: 10.1080/089583799196826. [DOI] [PubMed] [Google Scholar]
  12. Li X. Y., Gilmour P. S., Donaldson K., MacNee W. Free radical activity and pro-inflammatory effects of particulate air pollution (PM10) in vivo and in vitro. Thorax. 1996 Dec;51(12):1216–1222. doi: 10.1136/thx.51.12.1216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lim Y., Kim S. H., Cho Y. J., Kim K. A., Oh M. W., Lee K. H. Silica-induced oxygen radical generation in alveolar macrophage. Ind Health. 1997 Jul;35(3):380–387. doi: 10.2486/indhealth.35.380. [DOI] [PubMed] [Google Scholar]
  14. Mauderly J. L. Usefulness of animal models for predicting human responses to long-term inhalation of particles. Chest. 1996 Mar;109(3 Suppl):65S–68S. doi: 10.1378/chest.109.3_supplement.65s. [DOI] [PubMed] [Google Scholar]
  15. Nikula K. J., Snipes M. B., Barr E. B., Griffith W. C., Henderson R. F., Mauderly J. L. Comparative pulmonary toxicities and carcinogenicities of chronically inhaled diesel exhaust and carbon black in F344 rats. Fundam Appl Toxicol. 1995 Apr;25(1):80–94. doi: 10.1093/toxsci/25.1.80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Oberdörster G., Ferin J., Lehnert B. E. Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect. 1994 Oct;102 (Suppl 5):173–179. doi: 10.1289/ehp.102-1567252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Seaton A., MacNee W., Donaldson K., Godden D. Particulate air pollution and acute health effects. Lancet. 1995 Jan 21;345(8943):176–178. doi: 10.1016/s0140-6736(95)90173-6. [DOI] [PubMed] [Google Scholar]
  18. Stone V., Tuinman M., Vamvakopoulos J. E., Shaw J., Brown D., Petterson S., Faux S. P., Borm P., MacNee W., Michaelangeli F. Increased calcium influx in a monocytic cell line on exposure to ultrafine carbon black. Eur Respir J. 2000 Feb;15(2):297–303. doi: 10.1034/j.1399-3003.2000.15b13.x. [DOI] [PubMed] [Google Scholar]
  19. Wilson M. R., Gaumer H. R., Salvaggio J. E. Activation of the alternative complement pathway and generation of chemotactic factors by asbestos. J Allergy Clin Immunol. 1977 Oct;60(4):218–222. doi: 10.1016/0091-6749(77)90133-6. [DOI] [PubMed] [Google Scholar]

Articles from Occupational and Environmental Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES