Skip to main content
Occupational and Environmental Medicine logoLink to Occupational and Environmental Medicine
. 2000 Apr;57(4):249–257. doi: 10.1136/oem.57.4.249

Non-Hodgkin's lymphoma among electric utility workers in Ontario: the evaluation of alternate indices of exposure to 60 Hz electric and magnetic fields

P Villeneuve 1, D Agnew 1, A Miller 1, P Corey 1
PMCID: PMC1739929  PMID: 10810111

Abstract

OBJECTIVES—To examine associations between non-Hodgkin's lymphoma (NHL) and exposures to 60 Hz magnetic and electric fields in electric utility workers with a series of indices that capture a variety of aspects of field strength.
METHODS—The study population consisted of 51 cases of NHL and 203 individually matched controls identified from within a cohort of male electric utility workers in Ontario. Odds ratios were calculated for several exposure indices with conditional logistic regression models. Aspects of exposure to electric and magnetic fields that were modelled included: the percentage of time spent above selected threshold field intensities, mean transitions in field strength, SD, and the arithmetic and geometric mean field intensities.
RESULTS—For the most part, there was a lack of an association between exposure indices of magnetic fields and the incidence of NHL. Subjects in the upper tertile of percentage of time spent above electric field intensities of 10 and 40 V/m had odds ratios of 3.05 (95% confidence interval (95% CI) 1.07 to 8.80) and 3.57 (1.30 to 9.80), respectively, when compared with those in the lowest tertile. Moreover, the percentages of time spent above these electric field thresholds were significant predictors of case status over and above the association explained by duration of employment and the arithmetic or geometric mean exposure.
CONCLUSIONS—These data suggest that exposures above electric field threshold intensities of 10 and 40 V/m are important predictors of NHL. Consequently, the findings support the hypothesis that electric fields may play a promoting part in the aetiology of this cancer. Further occupational studies that include assessment of exposure to electric fields and measures of field strength above similar threshold cut off points are needed to confirm these findings.


Keywords: non-Hodgkin's lymphoma; electric fields; magnetic fields

Full Text

The Full Text of this article is available as a PDF (157.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azadniv M., Klinge C. M., Gelein R., Carstensen E. L., Cox C., Brayman A. A., Miller M. W. A test of the hypothesis that a 60-Hz magnetic field affects ornithine decarboxylase activity in mouse L929 cells in vitro. Biochem Biophys Res Commun. 1995 Sep 14;214(2):627–631. doi: 10.1006/bbrc.1995.2332. [DOI] [PubMed] [Google Scholar]
  2. Byus C. V., Pieper S. E., Adey W. R. The effects of low-energy 60-Hz environmental electromagnetic fields upon the growth-related enzyme ornithine decarboxylase. Carcinogenesis. 1987 Oct;8(10):1385–1389. doi: 10.1093/carcin/8.10.1385. [DOI] [PubMed] [Google Scholar]
  3. Cohen M. M., Kunska A., Astemborski J. A., McCulloch D., Paskewitz D. A. Effect of low-level, 60-Hz electromagnetic fields on human lymphoid cells: I. Mitotic rate and chromosome breakage in human peripheral lymphocytes. Bioelectromagnetics. 1986;7(4):415–423. doi: 10.1002/bem.2250070409. [DOI] [PubMed] [Google Scholar]
  4. Cohen M. M., Kunska A., Astemborski J. A., McCulloch D. The effect of low-level 60-Hz electromagnetic fields on human lymphoid cells. II. Sister-chromatid exchanges in peripheral lymphocytes and lymphoblastoid cell lines. Mutat Res. 1986 Nov;172(2):177–184. doi: 10.1016/0165-1218(86)90073-x. [DOI] [PubMed] [Google Scholar]
  5. Cress L. W., Owen R. D., Desta A. B. Ornithine decarboxylase activity in L929 cells following exposure to 60 Hz magnetic fields. Carcinogenesis. 1999 Jun;20(6):1025–1030. doi: 10.1093/carcin/20.6.1025. [DOI] [PubMed] [Google Scholar]
  6. Dubrow R., Wegman D. H. Cancer and occupation in Massachusetts: a death certificate study. Am J Ind Med. 1984;6(3):207–230. doi: 10.1002/ajim.4700060305. [DOI] [PubMed] [Google Scholar]
  7. Figgs L. W., Dosemeci M., Blair A. United States non-Hodgkin's lymphoma surveillance by occupation 1984-1989: a twenty-four state death certificate study. Am J Ind Med. 1995 Jun;27(6):817–835. doi: 10.1002/ajim.4700270606. [DOI] [PubMed] [Google Scholar]
  8. Floderus B., Persson T., Stenlund C., Wennberg A., Ost A., Knave B. Occupational exposure to electromagnetic fields in relation to leukemia and brain tumors: a case-control study in Sweden. Cancer Causes Control. 1993 Sep;4(5):465–476. doi: 10.1007/BF00050866. [DOI] [PubMed] [Google Scholar]
  9. Guénel P., Nicolau J., Imbernon E., Chevalier A., Goldberg M. Exposure to 50-Hz electric field and incidence of leukemia, brain tumors, and other cancers among French electric utility workers. Am J Epidemiol. 1996 Dec 15;144(12):1107–1121. doi: 10.1093/oxfordjournals.aje.a008889. [DOI] [PubMed] [Google Scholar]
  10. Hardell L., Holmberg B., Malker H., Paulsson L. E. Exposure to extremely low frequency electromagnetic fields and the risk of malignant diseases--an evaluation of epidemiological and experimental findings. Eur J Cancer Prev. 1995 Sep;4 (Suppl 1):3–107. doi: 10.1097/00008469-199509001-00001. [DOI] [PubMed] [Google Scholar]
  11. Huff J. Issues and controversies surrounding qualitative strategies for identifying and forecasting cancer causing agents in the human environment. Pharmacol Toxicol. 1993;72 (Suppl 1):12–27. doi: 10.1111/j.1600-0773.1993.tb01664.x. [DOI] [PubMed] [Google Scholar]
  12. Héroux P. A dosimeter for assessment of exposures to ELF fields. Bioelectromagnetics. 1991;12(4):241–257. doi: 10.1002/bem.2250120405. [DOI] [PubMed] [Google Scholar]
  13. Kheifets L. I., London S. J., Peters J. M. Leukemia risk and occupational electric field exposure in Los Angeles County, California. Am J Epidemiol. 1997 Jul 1;146(1):87–90. doi: 10.1093/oxfordjournals.aje.a009194. [DOI] [PubMed] [Google Scholar]
  14. Lacy-Hulbert A., Metcalfe J. C., Hesketh R. Biological responses to electromagnetic fields. FASEB J. 1998 Apr;12(6):395–420. doi: 10.1096/fasebj.12.6.395. [DOI] [PubMed] [Google Scholar]
  15. Lerchl A., Nonaka K. O., Reiter R. J. Pineal gland "magnetosensitivity" to static magnetic fields is a consequence of induced electric currents (eddy currents). J Pineal Res. 1991 Apr;10(3):109–116. doi: 10.1111/j.1600-079x.1991.tb00826.x. [DOI] [PubMed] [Google Scholar]
  16. Linet M. S., Malker H. S., McLaughlin J. K., Weiner J. A., Blot W. J., Ericsson J. L., Fraumeni J. F., Jr non-Hodgkin's lymphoma and occupation in Sweden: a registry based analysis. Br J Ind Med. 1993 Jan;50(1):79–84. doi: 10.1136/oem.50.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Litovitz T. A., Krause D., Mullins J. M. Effect of coherence time of the applied magnetic field on ornithine decarboxylase activity. Biochem Biophys Res Commun. 1991 Aug 15;178(3):862–865. doi: 10.1016/0006-291x(91)90970-i. [DOI] [PubMed] [Google Scholar]
  18. Litovitz T. A., Montrose C. J., Wang W. Dose-response implications of the transient nature of electromagnetic-field-induced bioeffects: theoretical hypotheses and predictions. Bioelectromagnetics. 1992;Suppl 1:237–246. doi: 10.1002/bem.2250130721. [DOI] [PubMed] [Google Scholar]
  19. Livingston G. K., Witt K. L., Gandhi O. P., Chatterjee I., Roti Roti J. L. Reproductive integrity of mammalian cells exposed to power frequency electromagnetic fields. Environ Mol Mutagen. 1991;17(1):49–58. doi: 10.1002/em.2850170108. [DOI] [PubMed] [Google Scholar]
  20. London S. J., Bowman J. D., Sobel E., Thomas D. C., Garabrant D. H., Pearce N., Bernstein L., Peters J. M. Exposure to magnetic fields among electrical workers in relation to leukemia risk in Los Angeles County. Am J Ind Med. 1994 Jul;26(1):47–60. doi: 10.1002/ajim.4700260105. [DOI] [PubMed] [Google Scholar]
  21. Löscher W., Liburdy R. P. Animal and cellular studies on carcinogenic effects of low frequency (50/60-Hz) magnetic fields. Mutat Res. 1998 Apr;410(2):185–220. doi: 10.1016/s1383-5742(97)00039-2. [DOI] [PubMed] [Google Scholar]
  22. Löscher W., Mevissen M. Animal studies on the role of 50/60-Hertz magnetic fields in carcinogenesis. Life Sci. 1994;54(21):1531–1543. doi: 10.1016/0024-3205(94)90024-8. [DOI] [PubMed] [Google Scholar]
  23. McCann J., Dietrich F., Rafferty C., Martin A. O. A critical review of the genotoxic potential of electric and magnetic fields. Mutat Res. 1993 Jul;297(1):61–95. doi: 10.1016/0165-1110(93)90008-b. [DOI] [PubMed] [Google Scholar]
  24. Miller A. B., To T., Agnew D. A., Wall C., Green L. M. Leukemia following occupational exposure to 60-Hz electric and magnetic fields among Ontario electric utility workers. Am J Epidemiol. 1996 Jul 15;144(2):150–160. doi: 10.1093/oxfordjournals.aje.a008902. [DOI] [PubMed] [Google Scholar]
  25. Murphy J. C., Kaden D. A., Warren J., Sivak A. International Commission for Protection Against Environmental Mutagens and Carcinogens. Power frequency electric and magnetic fields: a review of genetic toxicology. Mutat Res. 1993 Mar;296(3):221–240. doi: 10.1016/0165-1110(93)90013-d. [DOI] [PubMed] [Google Scholar]
  26. Phillips J. L., Rutledge L., Winters W. D. Transferrin binding to two human colon carcinoma cell lines: characterization and effect of 60-Hz electromagnetic fields. Cancer Res. 1986 Jan;46(1):239–244. [PubMed] [Google Scholar]
  27. Pitot H. C., Dragan Y. P. Facts and theories concerning the mechanisms of carcinogenesis. FASEB J. 1991 Jun;5(9):2280–2286. [PubMed] [Google Scholar]
  28. Poeggeler B., Reiter R. J., Tan D. X., Chen L. D., Manchester L. C. Melatonin, hydroxyl radical-mediated oxidative damage, and aging: a hypothesis. J Pineal Res. 1993 May;14(4):151–168. doi: 10.1111/j.1600-079x.1993.tb00498.x. [DOI] [PubMed] [Google Scholar]
  29. Reese J. A., Jostes R. F., Frazier M. E. Exposure of mammalian cells to 60-Hz magnetic or electric fields: analysis for DNA single-strand breaks. Bioelectromagnetics. 1988;9(3):237–247. doi: 10.1002/bem.2250090305. [DOI] [PubMed] [Google Scholar]
  30. Reiter R. J. Melatonin suppression by static and extremely low frequency electromagnetic fields: relationship to the reported increased incidence of cancer. Rev Environ Health. 1994 Jul-Dec;10(3-4):171–186. doi: 10.1515/reveh.1994.10.3-4.171. [DOI] [PubMed] [Google Scholar]
  31. Sahl J. D., Kelsh M. A., Greenland S. Cohort and nested case-control studies of hematopoietic cancers and brain cancer among electric utility workers. Epidemiology. 1993 Mar;4(2):104–114. doi: 10.1097/00001648-199303000-00005. [DOI] [PubMed] [Google Scholar]
  32. Savitz D. A., Loomis D. P. Magnetic field exposure in relation to leukemia and brain cancer mortality among electric utility workers. Am J Epidemiol. 1995 Jan 15;141(2):123–134. doi: 10.1093/oxfordjournals.aje.a117400. [DOI] [PubMed] [Google Scholar]
  33. Schroeder J. C., Savitz D. A. Lymphoma and multiple myeloma mortality in relation to magnetic field exposure among electric utility workers. Am J Ind Med. 1997 Oct;32(4):392–402. doi: 10.1002/(sici)1097-0274(199710)32:4<392::aid-ajim10>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
  34. Tan D. X., Pöeggeler B., Reiter R. J., Chen L. D., Chen S., Manchester L. C., Barlow-Walden L. R. The pineal hormone melatonin inhibits DNA-adduct formation induced by the chemical carcinogen safrole in vivo. Cancer Lett. 1993 Jun 15;70(1-2):65–71. doi: 10.1016/0304-3835(93)90076-l. [DOI] [PubMed] [Google Scholar]
  35. Tenforde T. S., Kaune W. T. Interaction of extremely low frequency electric and magnetic fields with humans. Health Phys. 1987 Dec;53(6):585–606. doi: 10.1097/00004032-198712000-00002. [DOI] [PubMed] [Google Scholar]
  36. Thériault G., Goldberg M., Miller A. B., Armstrong B., Guénel P., Deadman J., Imbernon E., To T., Chevalier A., Cyr D. Cancer risks associated with occupational exposure to magnetic fields among electric utility workers in Ontario and Quebec, Canada, and France: 1970-1989. Am J Epidemiol. 1994 Mar 15;139(6):550–572. doi: 10.1093/oxfordjournals.aje.a117046. [DOI] [PubMed] [Google Scholar]
  37. Villeneuve P. J., Agnew D. A., Corey P. N., Miller A. B. Alternate indices of electric and magnetic field exposures among Ontario electrical utility workers. Bioelectromagnetics. 1998;19(3):140–151. doi: 10.1002/(sici)1521-186x(1998)19:3<140::aid-bem2>3.0.co;2-1. [DOI] [PubMed] [Google Scholar]
  38. Wilson B. W., Chess E. K., Anderson L. E. 60-Hz electric-field effects on pineal melatonin rhythms: time course for onset and recovery. Bioelectromagnetics. 1986;7(2):239–242. doi: 10.1002/bem.2250070213. [DOI] [PubMed] [Google Scholar]

Articles from Occupational and Environmental Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES