Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 May;64(5):1800–1809. doi: 10.1128/iai.64.5.1800-1809.1996

Antigenic topology of the P29 surface lipoprotein of Mycoplasma fermentans: differential display of epitopes results in high-frequency phase variation.

P Theiss 1, A Karpas 1, K S Wise 1
PMCID: PMC173995  PMID: 8613394

Abstract

Antibodies to P29, a major lipid-modified surface protein of Mycoplasma fermentans, reveal phase variation of surface epitopes occurring with high frequency in clonal lineages of the organism. This occurs despite continuous expression of the entire epitope-bearing P29 product (detected by Western immunoblotting) and contrasts with phase variation of other surface antigens mediated by differential expression of proteins. To understand the structure and antigenic topology of P29, the single-copy p29 gene from strain PG18 was cloned and sequenced. The gene encodes a prolipoprotein containing a signal sequence predicted to be modified with lipid and cleaved at the N-terminal Cys-1 residue of the mature P29 lipoprotein. The remaining 218-residue hydrophilic sequence of P29 is predicted to be located external to the single plasma membrane. Additional Cys residues at positions 91 and 128 in the mature protein were shown to form a 36-residue disulfide loop by selectively labeling sulfhydryl groups that were liberated only after chemical reduction of monomeric P29. Two nearly identical charged amino acid sequences occurred in P29, within the disulfide loop and upstream of this structure. Two distinct epitopes binding different monoclonal antibodies were associated with opposite ends of the P29 protein, by mapping products expressed in Escherichia coli from PCR-generated 3' deletion mutations of the p29 gene. Each monoclonal antibody detected high-frequency and noncoordinate changes in accessibility of the corresponding epitopes in colony immunoblots of clonal variants, yet sequencing of the p29 gene from these variants and analysis of disulfide bonds revealed no associated changes in the primary sequence or disulfide loop structure of P29. These results suggest that P29 surface epitope variation may involve masking of selected regions of P29, possibly by other surface components undergoing phase variation by differential expression. Differential masking may be an important mechanism for altering the antigenic or functional surface topology of this mycoplasma and other wall-less mycoplasmas.

Full Text

The Full Text of this article is available as a PDF (480.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbour A. G. Linear DNA of Borrelia species and antigenic variation. Trends Microbiol. 1993 Sep;1(6):236–239. doi: 10.1016/0966-842x(93)90139-i. [DOI] [PubMed] [Google Scholar]
  2. Bardwell J. C. Building bridges: disulphide bond formation in the cell. Mol Microbiol. 1994 Oct;14(2):199–205. doi: 10.1111/j.1365-2958.1994.tb01281.x. [DOI] [PubMed] [Google Scholar]
  3. Bauer F. A., Wear D. J., Angritt P., Lo S. C. Mycoplasma fermentans (incognitus strain) infection in the kidneys of patients with acquired immunodeficiency syndrome and associated nephropathy: a light microscopic, immunohistochemical, and ultrastructural study. Hum Pathol. 1991 Jan;22(1):63–69. doi: 10.1016/0046-8177(91)90063-u. [DOI] [PubMed] [Google Scholar]
  4. Bhugra B., Voelker L. L., Zou N., Yu H., Dybvig K. Mechanism of antigenic variation in Mycoplasma pulmonis: interwoven, site-specific DNA inversions. Mol Microbiol. 1995 Nov;18(4):703–714. doi: 10.1111/j.1365-2958.1995.mmi_18040703.x. [DOI] [PubMed] [Google Scholar]
  5. Citti C., Wise K. S. Mycoplasma hyorhinis vlp gene transcription: critical role in phase variation and expression of surface lipoproteins. Mol Microbiol. 1995 Nov;18(4):649–660. doi: 10.1111/j.1365-2958.1995.mmi_18040649.x. [DOI] [PubMed] [Google Scholar]
  6. Cleavinger C. M., Kim M. F., Im J. H., Wise K. S. Identification of mycoplasma membrane proteins by systematic Tn phoA mutagenesis of a recombinant library. Mol Microbiol. 1995 Oct;18(2):283–293. doi: 10.1111/j.1365-2958.1995.mmi_18020283.x. [DOI] [PubMed] [Google Scholar]
  7. Cleavinger C. M., Kim M. F., Wise K. S. Processing and surface presentation of the Mycoplasma hyorhinis variant lipoprotein VlpC. J Bacteriol. 1994 Apr;176(8):2463–2467. doi: 10.1128/jb.176.8.2463-2467.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Doig A. J., Williams D. H. Is the hydrophobic effect stabilizing or destabilizing in proteins? The contribution of disulphide bonds to protein stability. J Mol Biol. 1991 Jan 20;217(2):389–398. doi: 10.1016/0022-2836(91)90551-g. [DOI] [PubMed] [Google Scholar]
  10. Dybvig K. DNA rearrangements and phenotypic switching in prokaryotes. Mol Microbiol. 1993 Nov;10(3):465–471. doi: 10.1111/j.1365-2958.1993.tb00919.x. [DOI] [PubMed] [Google Scholar]
  11. EDWARD D. G., FREUNDT E. A. The classification and nomenclature of organisms of the pleuropneumonia group. J Gen Microbiol. 1956 Feb;14(1):197–207. doi: 10.1099/00221287-14-1-197. [DOI] [PubMed] [Google Scholar]
  12. Kim M. F., Heidari M. B., Stull S. J., McIntosh M. A., Wise K. S. Identification and mapping of an immunogenic region of Mycoplasma hyopneumoniae p65 surface lipoprotein expressed in Escherichia coli from a cloned genomic fragment. Infect Immun. 1990 Aug;58(8):2637–2643. doi: 10.1128/iai.58.8.2637-2643.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Lo S. C., Wear D. J., Shih J. W., Wang R. Y., Newton P. B., 3rd, Rodriguez J. F. Fatal systemic infections of nonhuman primates by Mycoplasma fermentans (incognitus strain). Clin Infect Dis. 1993 Aug;17 (Suppl 1):S283–S288. doi: 10.1093/clinids/17.supplement_1.s283. [DOI] [PubMed] [Google Scholar]
  15. Markham P. F., Glew M. D., Whithear K. G., Walker I. D. Molecular cloning of a member of the gene family that encodes pMGA, a hemagglutinin of Mycoplasma gallisepticum. Infect Immun. 1993 Mar;61(3):903–909. doi: 10.1128/iai.61.3.903-909.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. NICOL C. S., EDWARD D. G. Role of organisms of the pleuropneumonia group in human genital infections. Br J Vener Dis. 1953 Sep;29(3):141–150. doi: 10.1136/sti.29.3.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Notarnicola S. M., McIntosh M. A., Wise K. S. Multiple translational products from a Mycoplasma hyorhinis gene expressed in Escherichia coli. J Bacteriol. 1990 Jun;172(6):2986–2995. doi: 10.1128/jb.172.6.2986-2995.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Parkinson J. S. Signal transduction schemes of bacteria. Cell. 1993 Jun 4;73(5):857–871. doi: 10.1016/0092-8674(93)90267-t. [DOI] [PubMed] [Google Scholar]
  19. RUITER M., WENTHOLT H. M. Isolation of a pleuropneumonia-like organism from a skin lesion associated with a fusospirochetal flora. J Invest Dermatol. 1955 Jan;24(1):31–34. doi: 10.1038/jid.1955.5. [DOI] [PubMed] [Google Scholar]
  20. Robertson B. D., Meyer T. F. Genetic variation in pathogenic bacteria. Trends Genet. 1992 Dec;8(12):422–427. doi: 10.1016/0168-9525(92)90325-x. [DOI] [PubMed] [Google Scholar]
  21. Rosengarten R., Yogev D. Variant colony surface antigenic phenotypes within mycoplasma strain populations: implications for species identification and strain standardization. J Clin Microbiol. 1996 Jan;34(1):149–158. doi: 10.1128/jcm.34.1.149-158.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shine J., Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342–1346. doi: 10.1073/pnas.71.4.1342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Simmons W. L., Zuhua C., Glass J. I., Simecka J. W., Cassell G. H., Watson H. L. Sequence analysis of the chromosomal region around and within the V-1-encoding gene of Mycoplasma pulmonis: evidence for DNA inversion as a mechanism for V-1 variation. Infect Immun. 1996 Feb;64(2):472–479. doi: 10.1128/iai.64.2.472-479.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sutcliffe I. C., Russell R. R. Lipoproteins of gram-positive bacteria. J Bacteriol. 1995 Mar;177(5):1123–1128. doi: 10.1128/jb.177.5.1123-1128.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Theiss P. M., Kim M. F., Wise K. S. Differential protein expression and surface presentation generate high-frequency antigenic variation in Mycoplasma fermentans. Infect Immun. 1993 Dec;61(12):5123–5128. doi: 10.1128/iai.61.12.5123-5128.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wise K. S. Adaptive surface variation in mycoplasmas. Trends Microbiol. 1993 May;1(2):59–63. doi: 10.1016/0966-842X(93)90034-O. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wise K. S., Kim M. F., Theiss P. M., Lo S. C. A family of strain-variant surface lipoproteins of Mycoplasma fermentans. Infect Immun. 1993 Aug;61(8):3327–3333. doi: 10.1128/iai.61.8.3327-3333.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wise K. S., Watson R. K. Mycoplasma hyorhinis GDL surface protein antigen p120 defined by monoclonal antibody. Infect Immun. 1983 Sep;41(3):1332–1339. doi: 10.1128/iai.41.3.1332-1339.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yamao F., Muto A., Kawauchi Y., Iwami M., Iwagami S., Azumi Y., Osawa S. UGA is read as tryptophan in Mycoplasma capricolum. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2306–2309. doi: 10.1073/pnas.82.8.2306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yogev D., Rosengarten R., Watson-McKown R., Wise K. S. Molecular basis of Mycoplasma surface antigenic variation: a novel set of divergent genes undergo spontaneous mutation of periodic coding regions and 5' regulatory sequences. EMBO J. 1991 Dec;10(13):4069–4079. doi: 10.1002/j.1460-2075.1991.tb04983.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yogev D., Watson-McKown R., Rosengarten R., Im J., Wise K. S. Increased structural and combinatorial diversity in an extended family of genes encoding Vlp surface proteins of Mycoplasma hyorhinis. J Bacteriol. 1995 Oct;177(19):5636–5643. doi: 10.1128/jb.177.19.5636-5643.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES