Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 May;64(5):1810–1818. doi: 10.1128/iai.64.5.1810-1818.1996

Developmental changes in the expression of Leishmania chagasi gp63 and heat shock protein in a human macrophage cell line.

J A Streit 1, J E Donelson 1, M W Agey 1, M E Wilson 1
PMCID: PMC173996  PMID: 8613395

Abstract

The ability of the protozoan Leishmania chagasi to infect a vertebrate host depends on its ability to survive intracellularly in a mammalian macrophage. Novel patterns of gene expression are probably important for conversion from the extracellular promastigote to the obligate intracellular amastigote parasite form. We found that the human macrophage-like cell line U937 provided an in vitro model of phagocytosis of L. chagasi promastigotes and intracellular conversion to amastigotes, allowing examination of parasite protein and RNA expression. The Leishmania surface protease gp63 assumed three isoforms during stage conversion, and a 64-kDa form of gp63 not present in promastigotes became the most prominent form in amastigotes. gp63 RNAs derived from the three different classes of msp genes (mspS, mspL, and mspC) were also differentially expressed. Infectious promastigotes contained mRNAs from mspS and mspC genes, whereas converting parasites expressed only mspL and mspC mRNAs. Sequence analysis of clones from an amastigote cDNA library confirmed the presence of gp63 mRNAs only from mspL and mspC class genes in tissue-derived amastigotes. Finally, 24 h after phagocytosis, there was a transient increase in the level of hsp70 and hsp90 proteins that subsequently decreased to baseline; this increase was not due to heat shock alone. We conclude that a unique pattern of selected L. chagasi proteins and RNAs is induced following phagocytosis by macrophages.

Full Text

The Full Text of this article is available as a PDF (522.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alfieri S. C., Pral E. M., Shaw E., Ramazeilles C., Rabinovitch M. Leishmania amazonensis: specific labeling of amastigote cysteine proteinases by radioiodinated N-benzyloxycarbonyl-tyrosyl-alanyl diazomethane. Exp Parasitol. 1991 Nov;73(4):424–432. doi: 10.1016/0014-4894(91)90066-6. [DOI] [PubMed] [Google Scholar]
  2. Bates P. A. Axenic culture of Leishmania amastigotes. Parasitol Today. 1993 Apr;9(4):143–146. doi: 10.1016/0169-4758(93)90181-e. [DOI] [PubMed] [Google Scholar]
  3. Bates P. A. Characterization of developmentally-regulated nucleases in promastigotes and amastigotes of Leishmania mexicana. FEMS Microbiol Lett. 1993 Feb 15;107(1):53–58. doi: 10.1016/0378-1097(93)90353-4. [DOI] [PubMed] [Google Scholar]
  4. Bates P. A. Complete developmental cycle of Leishmania mexicana in axenic culture. Parasitology. 1994 Jan;108(Pt 1):1–9. doi: 10.1017/s0031182000078458. [DOI] [PubMed] [Google Scholar]
  5. Bordier C. The promastigote surface protease of Leishmania. Parasitol Today. 1987 May;3(5):151–153. doi: 10.1016/0169-4758(87)90199-2. [DOI] [PubMed] [Google Scholar]
  6. Button L. L., Russell D. G., Klein H. L., Medina-Acosta E., Karess R. E., McMaster W. R. Genes encoding the major surface glycoprotein in Leishmania are tandemly linked at a single chromosomal locus and are constitutively transcribed. Mol Biochem Parasitol. 1989 Jan 15;32(2-3):271–283. doi: 10.1016/0166-6851(89)90076-5. [DOI] [PubMed] [Google Scholar]
  7. Chang K. P. Human cutaneous lieshmania in a mouse macrophage line: propagation and isolation of intracellular parasites. Science. 1980 Sep 12;209(4462):1240–1242. doi: 10.1126/science.7403880. [DOI] [PubMed] [Google Scholar]
  8. Chaudhuri G., Chaudhuri M., Pan A., Chang K. P. Surface acid proteinase (gp63) of Leishmania mexicana. A metalloenzyme capable of protecting liposome-encapsulated proteins from phagolysosomal degradation by macrophages. J Biol Chem. 1989 May 5;264(13):7483–7489. [PubMed] [Google Scholar]
  9. Christman M. F., Morgan R. W., Jacobson F. S., Ames B. N. Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell. 1985 Jul;41(3):753–762. doi: 10.1016/s0092-8674(85)80056-8. [DOI] [PubMed] [Google Scholar]
  10. Coulson R. M., Smith D. F. Isolation of genes showing increased or unique expression in the infective promastigotes of Leishmania major. Mol Biochem Parasitol. 1990 Apr;40(1):63–75. doi: 10.1016/0166-6851(90)90080-6. [DOI] [PubMed] [Google Scholar]
  11. Craig E. A., Gambill B. D., Nelson R. J. Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol Rev. 1993 Jun;57(2):402–414. doi: 10.1128/mr.57.2.402-414.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Doyle P. S., Engel J. C., Pimenta P. F., da Silva P. P., Dwyer D. M. Leishmania donovani: long-term culture of axenic amastigotes at 37 degrees C. Exp Parasitol. 1991 Oct;73(3):326–334. doi: 10.1016/0014-4894(91)90104-5. [DOI] [PubMed] [Google Scholar]
  13. Eperon S., McMahon-Pratt D. Extracellular cultivation and morphological characterization of amastigote-like forms of Leishmania panamensis and L. braziliensis. J Protozool. 1989 Sep-Oct;36(5):502–510. doi: 10.1111/j.1550-7408.1989.tb01086.x. [DOI] [PubMed] [Google Scholar]
  14. Etges R., Bouvier J., Bordier C. The major surface protein of Leishmania promastigotes is anchored in the membrane by a myristic acid-labeled phospholipid. EMBO J. 1986 Mar;5(3):597–601. doi: 10.1002/j.1460-2075.1986.tb04252.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Freeman M. L., Spitz D. R., Meredith M. J. Does heat shock enhance oxidative stress? Studies with ferrous and ferric iron. Radiat Res. 1990 Dec;124(3):288–293. [PubMed] [Google Scholar]
  16. Frommel T. O., Button L. L., Fujikura Y., McMaster W. R. The major surface glycoprotein (GP63) is present in both life stages of Leishmania. Mol Biochem Parasitol. 1990 Jan 1;38(1):25–32. doi: 10.1016/0166-6851(90)90201-v. [DOI] [PubMed] [Google Scholar]
  17. Glaser T. A., Wells S. J., Spithill T. W., Pettitt J. M., Humphris D. C., Mukkada A. J. Leishmania major and L. donovani: a method for rapid purification of amastigotes. Exp Parasitol. 1990 Oct;71(3):343–345. doi: 10.1016/0014-4894(90)90039-f. [DOI] [PubMed] [Google Scholar]
  18. Hanekamp T., Langer P. J. Molecular karyotype and chromosomal localization of genes encoding two major surface glycoproteins, gp63 and gp46/M2, hsp70, and beta-tubulin in cloned strains of several Leishmania species. Mol Biochem Parasitol. 1991 Sep;48(1):27–37. doi: 10.1016/0166-6851(91)90161-x. [DOI] [PubMed] [Google Scholar]
  19. Hightower L. E. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell. 1991 Jul 26;66(2):191–197. doi: 10.1016/0092-8674(91)90611-2. [DOI] [PubMed] [Google Scholar]
  20. Hunter K. W., Cook C. L., Hayunga E. G. Leishmanial differentiation in vitro: induction of heat shock proteins. Biochem Biophys Res Commun. 1984 Dec 14;125(2):755–760. doi: 10.1016/0006-291x(84)90603-x. [DOI] [PubMed] [Google Scholar]
  21. Imlay J. A., Linn S. DNA damage and oxygen radical toxicity. Science. 1988 Jun 3;240(4857):1302–1309. doi: 10.1126/science.3287616. [DOI] [PubMed] [Google Scholar]
  22. Joshi M., Dwyer D. M., Nakhasi H. L. Cloning and characterization of differentially expressed genes from in vitro-grown 'amastigotes' of Leishmania donovani. Mol Biochem Parasitol. 1993 Apr;58(2):345–354. doi: 10.1016/0166-6851(93)90057-5. [DOI] [PubMed] [Google Scholar]
  23. Kurtz S., Rossi J., Petko L., Lindquist S. An ancient developmental induction: heat-shock proteins induced in sporulation and oogenesis. Science. 1986 Mar 7;231(4742):1154–1157. doi: 10.1126/science.3511530. [DOI] [PubMed] [Google Scholar]
  24. Kweider M., Lemesre J. L., Darcy F., Kusnierz J. P., Capron A., Santoro F. Infectivity of Leishmania braziliensis promastigotes is dependent on the increasing expression of a 65,000-dalton surface antigen. J Immunol. 1987 Jan 1;138(1):299–305. [PubMed] [Google Scholar]
  25. Lawrence F., Robert-Gero M. Induction of heat shock and stress proteins in promastigotes of three Leishmania species. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4414–4417. doi: 10.1073/pnas.82.13.4414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lee M. G., Atkinson B. L., Giannini S. H., Van der Ploeg L. H. Structure and expression of the hsp 70 gene family of Leishmania major. Nucleic Acids Res. 1988 Oct 25;16(20):9567–9585. doi: 10.1093/nar/16.20.9567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lindquist S. The heat-shock response. Annu Rev Biochem. 1986;55:1151–1191. doi: 10.1146/annurev.bi.55.070186.005443. [DOI] [PubMed] [Google Scholar]
  28. Maison C. M., Villiers C. L., Colomb M. G. Proteolysis of C3 on U937 cell plasma membranes. Purification of cathepsin G. J Immunol. 1991 Aug 1;147(3):921–926. [PubMed] [Google Scholar]
  29. Medina-Acosta E., Karess R. E., Russell D. G. Structurally distinct genes for the surface protease of Leishmania mexicana are developmentally regulated. Mol Biochem Parasitol. 1993 Jan;57(1):31–45. doi: 10.1016/0166-6851(93)90241-o. [DOI] [PubMed] [Google Scholar]
  30. Medina-Acosta E., Karess R. E., Schwartz H., Russell D. G. The promastigote surface protease (gp63) of Leishmania is expressed but differentially processed and localized in the amastigote stage. Mol Biochem Parasitol. 1989 Dec;37(2):263–273. doi: 10.1016/0166-6851(89)90158-8. [DOI] [PubMed] [Google Scholar]
  31. Neumann S., Ziv E., Lantner F., Schechter I. Regulation of HSP70 gene expression during the life cycle of the parasitic helminth Schistosoma mansoni. Eur J Biochem. 1993 Mar 1;212(2):589–596. doi: 10.1111/j.1432-1033.1993.tb17697.x. [DOI] [PubMed] [Google Scholar]
  32. Pan A. A. Leishmania mexicana pifanoi: analysis of the antigenic relationships between promastigotes and amastigotes by gel diffusion, immunoelectrophoresis, and immunoprecipitation. J Protozool. 1986 May;33(2):192–197. doi: 10.1111/j.1550-7408.1986.tb05588.x. [DOI] [PubMed] [Google Scholar]
  33. Pearson R. D., Steigbigel R. T. Mechanism of lethal effect of human serum upon Leishmania donovani. J Immunol. 1980 Nov;125(5):2195–2201. [PubMed] [Google Scholar]
  34. Rainey P. M., Spithill T. W., McMahon-Pratt D., Pan A. A. Biochemical and molecular characterization of Leishmania pifanoi amastigotes in continuous axenic culture. Mol Biochem Parasitol. 1991 Nov;49(1):111–118. doi: 10.1016/0166-6851(91)90134-r. [DOI] [PubMed] [Google Scholar]
  35. Ramamoorthy R., Donelson J. E., Paetz K. E., Maybodi M., Roberts S. C., Wilson M. E. Three distinct RNAs for the surface protease gp63 are differentially expressed during development of Leishmania donovani chagasi promastigotes to an infectious form. J Biol Chem. 1992 Jan 25;267(3):1888–1895. [PubMed] [Google Scholar]
  36. Rey-Ladino J. A., Reiner N. E. Expression of 65- and 67-kilodalton heat-regulated proteins and a 70-kilodalton heat shock cognate protein of Leishmania donovani in macrophages. Infect Immun. 1993 Aug;61(8):3265–3272. doi: 10.1128/iai.61.8.3265-3272.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Roberts S. C., Swihart K. G., Agey M. W., Ramamoorthy R., Wilson M. E., Donelson J. E. Sequence diversity and organization of the msp gene family encoding gp63 of Leishmania chagasi. Mol Biochem Parasitol. 1993 Dec;62(2):157–171. doi: 10.1016/0166-6851(93)90106-8. [DOI] [PubMed] [Google Scholar]
  38. Roberts S. C., Wilson M. E., Donelson J. E. Developmentally regulated expression of a novel 59-kDa product of the major surface protease (Msp or gp63) gene family of Leishmania chagasi. J Biol Chem. 1995 Apr 14;270(15):8884–8892. doi: 10.1074/jbc.270.15.8884. [DOI] [PubMed] [Google Scholar]
  39. Russell D. G., Wilhelm H. The involvement of the major surface glycoprotein (gp63) of Leishmania promastigotes in attachment to macrophages. J Immunol. 1986 Apr 1;136(7):2613–2620. [PubMed] [Google Scholar]
  40. Sadick M. D., Raff H. V. Differences in expression and exposure of promastigote and amastigote membrane molecules in Leishmania tropica. Infect Immun. 1985 Feb;47(2):395–400. doi: 10.1128/iai.47.2.395-400.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schlesinger M. J. Heat shock proteins. J Biol Chem. 1990 Jul 25;265(21):12111–12114. [PubMed] [Google Scholar]
  43. Shapira M., McEwen J. G., Jaffe C. L. Temperature effects on molecular processes which lead to stage differentiation in Leishmania. EMBO J. 1988 Sep;7(9):2895–2901. doi: 10.1002/j.1460-2075.1988.tb03147.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Smejkal R. M., Wolff R., Olenick J. G. Leishmania braziliensis panamensis: increased infectivity resulting from heat shock. Exp Parasitol. 1988 Feb;65(1):1–9. doi: 10.1016/0014-4894(88)90101-4. [DOI] [PubMed] [Google Scholar]
  45. Spitz D. R., Dewey W. C., Li G. C. Hydrogen peroxide or heat shock induces resistance to hydrogen peroxide in Chinese hamster fibroblasts. J Cell Physiol. 1987 Jun;131(3):364–373. doi: 10.1002/jcp.1041310308. [DOI] [PubMed] [Google Scholar]
  46. Stierhof Y. D., Schwarz H., Menz B., Russell D. G., Quinten M., Overath P. Monoclonal antibodies to Leishmania mexicana promastigote antigens. II. Cellular localization of antigens in promastigotes and infected macrophages. J Cell Sci. 1991 May;99(Pt 1):181–186. doi: 10.1242/jcs.99.1.181. [DOI] [PubMed] [Google Scholar]
  47. Toye P., Remold H. The influence of temperature and serum deprivation on the synthesis of heat-shock proteins and alpha and beta tubulin in promastigotes of Leishmania major. Mol Biochem Parasitol. 1989 Jun 1;35(1):1–10. doi: 10.1016/0166-6851(89)90136-9. [DOI] [PubMed] [Google Scholar]
  48. Traub-Cseko Y. M., Duboise M., Boukai L. K., McMahon-Pratt D. Identification of two distinct cysteine proteinase genes of Leishmania pifanoi axenic amastigotes using the polymerase chain reaction. Mol Biochem Parasitol. 1993 Jan;57(1):101–115. doi: 10.1016/0166-6851(93)90248-v. [DOI] [PubMed] [Google Scholar]
  49. Van der Ploeg L. H., Giannini S. H., Cantor C. R. Heat shock genes: regulatory role for differentiation in parasitic protozoa. Science. 1985 Jun 21;228(4706):1443–1446. doi: 10.1126/science.4012301. [DOI] [PubMed] [Google Scholar]
  50. Webb J. R., Button L. L., McMaster W. R. Heterogeneity of the genes encoding the major surface glycoprotein of Leishmania donovani. Mol Biochem Parasitol. 1991 Oct;48(2):173–184. doi: 10.1016/0166-6851(91)90113-k. [DOI] [PubMed] [Google Scholar]
  51. White A. C., Jr, Hanham C. Species and stage specificity of Leishmania donovani antigens. J Parasitol. 1991 Feb;77(1):142–150. [PubMed] [Google Scholar]
  52. Wilson M. E., Andersen K. A., Britigan B. E. Response of Leishmania chagasi promastigotes to oxidant stress. Infect Immun. 1994 Nov;62(11):5133–5141. doi: 10.1128/iai.62.11.5133-5141.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Wilson M. E., Hardin K. K. The major concanavalin A-binding surface glycoprotein of Leishmania donovani chagasi promastigotes is involved in attachment to human macrophages. J Immunol. 1988 Jul 1;141(1):265–272. [PubMed] [Google Scholar]
  54. Wilson M. E., Innes D. J., Sousa A. D., Pearson R. D. Early histopathology of experimental infection with Leishmania donovani in hamsters. J Parasitol. 1987 Feb;73(1):55–63. [PubMed] [Google Scholar]
  55. Zarley J. H., Britigan B. E., Wilson M. E. Hydrogen peroxide-mediated toxicity for Leishmania donovani chagasi promastigotes. Role of hydroxyl radical and protection by heat shock. J Clin Invest. 1991 Nov;88(5):1511–1521. doi: 10.1172/JCI115461. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES