Skip to main content
Occupational and Environmental Medicine logoLink to Occupational and Environmental Medicine
. 2000 Aug;57(8):535–541. doi: 10.1136/oem.57.8.535

Determinants of bone and blood lead concentrations in the early postpartum period

M J Brown 1, H Hu 1, T Gonzales-Cossio 1, K Peterson 1, L Sanin 1, M d Kageyama 1, E Palazuelos 1, A Aro 1, L Schnaas 1, M Hernandez-Avila 1
PMCID: PMC1739996  PMID: 10896960

Abstract

OBJECTIVE—This study investigated determinants of bone and blood lead concentrations in 430 lactating Mexican women during the early postpartum period and the contribution of bone lead to blood lead.
METHODS—Maternal venous lead was measured at delivery and postpartum, and bone lead concentrations, measured with in vivo K-x ray fluorescence, were measured post partum. Data on environmental exposure, demographic characteristics, and maternal factors related to exposure to lead were collected by questionnaire. Linear regression was used to examine the relations between bone and blood lead, demographics, and environmental exposure variables.
RESULTS—Mean (SD) blood, tibial, and patellar lead concentrations were 9.5 (4.5) µg/dl, 10.2 (10.1) µg Pb/g bone mineral, and 15.2 (15.1) µg Pb/g bone mineral respectively. These values are considerably higher than values for women in the United States. Older age, the cumulative use of lead glazed pottery, and higher proportion of life spent in Mexico City were powerful predictors of higher bone lead concentrations. Use of lead glazed ceramics to cook food in the past week and increased patellar lead concentrations were significant predictors of increased blood lead. Patellar lead concentrations explained one third of the variance accounted for by the final blood lead model. Women in the 90th percentile for patella lead had an untransformed predicted mean blood lead concentration 3.6 µg/dl higher than those in the 10th percentile.
CONCLUSIONS—This study identified the use of lead glazed ceramics as a major source of cumulative exposure to lead, as reflected by bone lead concentrations, as well as current exposure, reflected by blood lead, in Mexico. A higher proportion of life spent in Mexico City, a proxy for exposure to leaded gasoline emissions, was identified as the other major source of cumulative lead exposure. The influence of bone lead on blood lead coupled with the long half life of lead in bone has implications for other populations and suggests that bone stores may pose a threat to women of reproductive age long after exposure has declined.


Keywords: postpartum; blood lead; bone lead

Full Text

The Full Text of this article is available as a PDF (140.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aro A. C., Todd A. C., Amarasiriwardena C., Hu H. Improvements in the calibration of 109Cd K x-ray fluorescence systems for measuring bone lead in vivo. Phys Med Biol. 1994 Dec;39(12):2263–2271. doi: 10.1088/0031-9155/39/12/009. [DOI] [PubMed] [Google Scholar]
  2. Bellinger D., Leviton A., Waternaux C., Needleman H., Rabinowitz M. Longitudinal analyses of prenatal and postnatal lead exposure and early cognitive development. N Engl J Med. 1987 Apr 23;316(17):1037–1043. doi: 10.1056/NEJM198704233161701. [DOI] [PubMed] [Google Scholar]
  3. Bleecker M. L., Lindgren K. N., Ford D. P. Differential contribution of current and cumulative indices of lead dose to neuropsychological performance by age. Neurology. 1997 Mar;48(3):639–645. doi: 10.1212/wnl.48.3.639. [DOI] [PubMed] [Google Scholar]
  4. Claeys-Thoreau F., Thiessen L., Bruaux P., Ducoffre G., Verduyn G. Assessment and comparison of human exposure to lead between Belgium, Malta, Mexico and Sweden. Int Arch Occup Environ Health. 1987;59(1):31–41. doi: 10.1007/BF00377676. [DOI] [PubMed] [Google Scholar]
  5. Counter S. A., Buchanan L. H., Laurell G., Ortega F. Field screening of blood lead levels in remote Andean villages. Neurotoxicology. 1998 Dec;19(6):871–877. [PubMed] [Google Scholar]
  6. Fernandez G. O., Martinez R. R., Fortoul T. I., Palazuelos E. High blood lead levels in ceramic folk art workers in Michoacan, Mexico. Arch Environ Health. 1997 Jan-Feb;52(1):51–55. doi: 10.1080/00039899709603800. [DOI] [PubMed] [Google Scholar]
  7. González-Cossío T., Peterson K. E., Sanín L. H., Fishbein E., Palazuelos E., Aro A., Hernández-Avila M., Hu H. Decrease in birth weight in relation to maternal bone-lead burden. Pediatrics. 1997 Nov;100(5):856–862. doi: 10.1542/peds.100.5.856. [DOI] [PubMed] [Google Scholar]
  8. Goyer R. A. Transplacental transport of lead. Environ Health Perspect. 1990 Nov;89:101–105. doi: 10.1289/ehp.9089101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gulson B. L., Jameson C. W., Mahaffey K. R., Mizon K. J., Korsch M. J., Vimpani G. Pregnancy increases mobilization of lead from maternal skeleton. J Lab Clin Med. 1997 Jul;130(1):51–62. doi: 10.1016/s0022-2143(97)90058-5. [DOI] [PubMed] [Google Scholar]
  10. Hallén I. P., Jönsson S., Karlsson M. O., Oskarsson A. Toxicokinetics of lead in lactating and nonlactating mice. Toxicol Appl Pharmacol. 1996 Feb;136(2):342–347. doi: 10.1006/taap.1996.0041. [DOI] [PubMed] [Google Scholar]
  11. Hernandez Avila M., Romieu I., Rios C., Rivero A., Palazuelos E. Lead-glazed ceramics as major determinants of blood lead levels in Mexican women. Environ Health Perspect. 1991 Aug;94:117–120. doi: 10.1289/ehp.94-1567967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hernandez-Avila M., Gonzalez-Cossio T., Palazuelos E., Romieu I., Aro A., Fishbein E., Peterson K. E., Hu H. Dietary and environmental determinants of blood and bone lead levels in lactating postpartum women living in Mexico City. Environ Health Perspect. 1996 Oct;104(10):1076–1082. doi: 10.1289/ehp.961041076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hernández-Avila M., Romieu I., Parra S., Hernández-Avila J., Madrigal H., Willett W. Validity and reproducibility of a food frequency questionnaire to assess dietary intake of women living in Mexico City. Salud Publica Mex. 1998 Mar-Apr;40(2):133–140. doi: 10.1590/s0036-36341998000200005. [DOI] [PubMed] [Google Scholar]
  14. Hoppin J. A., Aro A. C., Williams P. L., Hu H., Ryan P. B. Validation of K-XRF bone lead measurement in young adults. Environ Health Perspect. 1995 Jan;103(1):78–83. doi: 10.1289/ehp.9510378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hu H., Aro A., Payton M., Korrick S., Sparrow D., Weiss S. T., Rotnitzky A. The relationship of bone and blood lead to hypertension. The Normative Aging Study. JAMA. 1996 Apr 17;275(15):1171–1176. [PubMed] [Google Scholar]
  16. Hu H., Hashimoto D., Besser M. Levels of lead in blood and bone of women giving birth in a Boston hospital. Arch Environ Health. 1996 Jan-Feb;51(1):52–58. doi: 10.1080/00039896.1996.9935994. [DOI] [PubMed] [Google Scholar]
  17. Hu H., Payton M., Korrick S., Aro A., Sparrow D., Weiss S. T., Rotnitzky A. Determinants of bone and blood lead levels among community-exposed middle-aged to elderly men. The normative aging study. Am J Epidemiol. 1996 Oct 15;144(8):749–759. doi: 10.1093/oxfordjournals.aje.a008999. [DOI] [PubMed] [Google Scholar]
  18. Hu H., Rabinowitz M., Smith D. Bone lead as a biological marker in epidemiologic studies of chronic toxicity: conceptual paradigms. Environ Health Perspect. 1998 Jan;106(1):1–8. doi: 10.1289/ehp.981061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hu H., Watanabe H., Payton M., Korrick S., Rotnitzky A. The relationship between bone lead and hemoglobin. JAMA. 1994 Nov 16;272(19):1512–1517. [PubMed] [Google Scholar]
  20. Kim R., Aro A., Rotnitzky A., Amarasiriwardena C., Hu H. K x-ray fluorescence measurements of bone lead concentration: the analysis of low-level data. Phys Med Biol. 1995 Sep;40(9):1475–1485. doi: 10.1088/0031-9155/40/9/007. [DOI] [PubMed] [Google Scholar]
  21. Korrick S. A., Hunter D. J., Rotnitzky A., Hu H., Speizer F. E. Lead and hypertension in a sample of middle-aged women. Am J Public Health. 1999 Mar;89(3):330–335. doi: 10.2105/ajph.89.3.330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kosnett M. J., Becker C. E., Osterloh J. D., Kelly T. J., Pasta D. J. Factors influencing bone lead concentration in a suburban community assessed by noninvasive K x-ray fluorescence. JAMA. 1994 Jan 19;271(3):197–203. [PubMed] [Google Scholar]
  23. Montoya-Cabrera M. A., Maldonado-Torres L., Landázuri-Laris P., Montes-Allende F., Escobar-Márquez R., Margain-Compeán J. C. Lead determinations in the blood of the umbilical cord of normal neonates. Arch Invest Med (Mex) 1981;12(4):457–462. [PubMed] [Google Scholar]
  24. Needleman H. L., Riess J. A., Tobin M. J., Biesecker G. E., Greenhouse J. B. Bone lead levels and delinquent behavior. JAMA. 1996 Feb 7;275(5):363–369. [PubMed] [Google Scholar]
  25. Payton M., Riggs K. M., Spiro A., 3rd, Weiss S. T., Hu H. Relations of bone and blood lead to cognitive function: the VA Normative Aging Study. Neurotoxicol Teratol. 1998 Jan-Feb;20(1):19–27. doi: 10.1016/s0892-0362(97)00075-5. [DOI] [PubMed] [Google Scholar]
  26. Rabinowitz M. B., Wetherill G. W., Kopple J. D. Kinetic analysis of lead metabolism in healthy humans. J Clin Invest. 1976 Aug;58(2):260–270. doi: 10.1172/JCI108467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Romieu I., Carreon T., Lopez L., Palazuelos E., Rios C., Manuel Y., Hernandez-Avila M. Environmental urban lead exposure and blood lead levels in children of Mexico City. Environ Health Perspect. 1995 Nov;103(11):1036–1040. doi: 10.1289/ehp.951031036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Romieu I., Palazuelos E., Hernandez Avila M., Rios C., Muñoz I., Jimenez C., Cahero G. Sources of lead exposure in Mexico City. Environ Health Perspect. 1994 Apr;102(4):384–389. doi: 10.1289/ehp.94102384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rothenberg S. J., Karchmer S., Schnaas L., Perroni E., Zea F., Fernández Alba J. Changes in serial blood lead levels during pregnancy. Environ Health Perspect. 1994 Oct;102(10):876–880. doi: 10.1289/ehp.94102876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Roy M. M., Gordon C. L., Beaumont L. F., Chettle D. R., Webber C. E. Further experience with bone lead content measurements in residents of southern Ontario. Appl Radiat Isot. 1997 Mar;48(3):391–396. doi: 10.1016/s0969-8043(96)00223-0. [DOI] [PubMed] [Google Scholar]
  31. Silbergeld E. K. Lead in bone: implications for toxicology during pregnancy and lactation. Environ Health Perspect. 1991 Feb;91:63–70. doi: 10.1289/ehp.919163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Solé E., Ballabriga A., Dominguez C. Lead exposure in the general population of the Metropolitan Area of Barcelona: blood levels and related factors. Sci Total Environ. 1998 Dec 11;224(1-3):19–27. doi: 10.1016/s0048-9697(98)00270-8. [DOI] [PubMed] [Google Scholar]
  33. Somervaille L. J., Chettle D. R., Scott M. C. In vivo measurement of lead in bone using x-ray fluorescence. Phys Med Biol. 1985 Sep;30(9):929–943. doi: 10.1088/0031-9155/30/9/005. [DOI] [PubMed] [Google Scholar]
  34. Somervaille L. J., Nilsson U., Chettle D. R., Tell I., Scott M. C., Schütz A., Mattsson S., Skerfving S. In vivo measurements of bone lead--a comparison of two x-ray fluorescence techniques used at three different bone sites. Phys Med Biol. 1989 Dec;34(12):1833–1845. doi: 10.1088/0031-9155/34/12/007. [DOI] [PubMed] [Google Scholar]

Articles from Occupational and Environmental Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES